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Optimization problems 
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In order to find the solution of 
these problems, it is important: 

1. Analyse the properties of its 
mathematical expressions 

2. Analyse the mathematical 
structure of the problem, 
classify it according to this 
structure and find appropriate 
methods for each of them. NPL problem 



Outline 

 General concepts 
– Formulation 
– Local and global optimum 
– Feasibility 

 Mathematical properties 
– Continuity 
– Convexity 

 Different types of optimization problems 



Terminology 
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x = (x1, x2, ...., xn)’ decision vector of real 
variables 

J(x)   cost function 

hi (x) = 0   i = 1,2,...,l      equality constraints 

gj(x) ≤ 0   j = 1,2,...,m    inequality constraints 

If hi(x) and gj(x) do not exist, the problem is called 
unconstraint optimization 



Equivalencies 
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J(x) 

x x* 

Minimize /  Maximize    
min J(x)  =  max –J(x) 

gj(x) ≤ a can be written as  gj(x) – a ≤ 0 

gj(x) ≤ 0  is equivalent to  -gj(x) ≥ 0 

gj(x) ≤ 0 is equivalent to gj(x) + ε = 0, ε ≥ 0 

hi(x) = 0 is equivalent to hi(x) - ε ≤ 0, ε ≥ 0 

J(x) 

x 
x* 



Contours  
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Feasibility 
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The constraints 
define the searching 
space or feasible 
set F 

J(x) 
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F 



Feasibility 
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The constraints 
define the searching 
space or feasible 
set F 

x1 

x2 

If the set F is empty, that is, there is no x 
satisfying all constraints, the problem is 
no feasible and it has no solution 

J1 
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J3 F 



Examples 
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Active constraints 
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A constraint gj(x) ≤ 0 is 
active in a point x0 if:    
gj(x0) = 0 Point x0 = (2, 1)’ 

x1+ 2x2= 4 Inactive constraint in x0 

Active constraint in x0 

(Quite often the 
concept refers to the 

optimal solution) 



Conex regions 
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Conex Feasible region F Non conex feasible region F 



Local optimum (local) 

A point x*∈F is call a local minimum of the 
optimization problem if there exist a set 
around  x* such that for any other point    
x ∈ F from the set: 

                         J(x*) ≤ J(x)  

J(x) 

x x* 
J(x) 

x x1
* x2

* 

Several local 
minimums can 
exist 

If the 
inequality is 
strict, the 
minimum is a 
proper one 

J(x) 

x x* 

Improper 
minimum 



Global optimum 

A point x* is called a global optimum of the 
optimization problem if for any point 
belonging to the feasible set F: 

                         J(x*) ≤ J(x)  

J(x) 

x 

J(x) 

x 

If there is no x* ∈F 
such that   J(x*) ≤ J(x) 
then the problem is 
unbounded and there 
is no minimum 

x* 

Global 
optimum 

Unbounded 
problem 



Example 

Several local 
minimums and 

maximums 



Examples 
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Unconstraint optimum 

Local optimum 



Continuity 
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Continous 
function in x0 

x0 x0 

Discontinuous in 
x0 

Many algorithms require 
continuous functions and 
continuous derivatives 

Derivative not 
defined 



Continuity 
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Continuous, but 
with 
discontinuous 
derivative in x0 

x0 

J(x) 
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Discontinuous derivatives 
appear when linear 
interpolation is used to 
compute values of a function 
defined only at a discrete 
number of points x 

Those optimization methods 
based on the use of derivatives 
can suffer from oscillations and 
lack of convergence if there are 
discontinuities in the functions 



Theorem 
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A continuous function 
J(x) has a global 
minimum at a point of 
any closed and 
bounded set F 



Convexity 

x1 

x2 The shape of 
the searching 
area is 
important for 
the 
optimization 
methods 
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F 
F convex 

F no-convex 

A set F is a convex one if 
and only if, the segment 
joining any two points of the 
set is fully included in the set 
F 

F 



Convex set 

F is convex if, and only if: 

Fx)1(xx
]1,0[,Fx,x

21

21

∈γ−+γ=
∈γ∀∈∀

F 

The intersection of two convex 
sets is convex 

Closed and convex 
region 



Convex functions 
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Function J(x) is convex in a 
convex set F if it is always 
bellow a linear interpolation 
between any two points 
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If the inequality stands with <  the function is strictly convex 



Concave functions 
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Function J(x) is concave in a 
convex set F if it is always 
above a linear interpolation 

between any two points 
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If the inequality stands with >  the function is strictly concave 



Convexity 

J(x) 
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If J(x) is convex then   -J(x) is concave 

A linear function is convex and concave 

J(x) 

x x1 x2 



Examples of convex functions 
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All norms are 
convex. The 
geometric 
mean is 
concave 



(Local) Convexity of one variable 
functions 
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x0 x 

If H is continuous and positive 
semidefinite, then J(x) is convex 
in an interval around x0 

J(x0)+J’(x0)(x-x0) 
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(Local) Convexity of functions 
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The quadratic form z’Hz defines 
the convexity of J(x) around x0 

J(x0)+J’(x0)(x-x0) 

∂J/∂x Jacobian       
H   Hessian 



Quadratic forms / PD matrices 

A quadratic form z’Hz is positive definite (PD) if  z’Hz > 0  ∀z 

The matrix H must have all its eigenvalues > 0 

By extension, H is named also as PD 

A quadratic form z’Hz is positive semidefinite (PSD) if  z’Hz ≥  0  ∀z 

The matrix H must have all its eigenvalues ≥ 0 

A quadratic form z’Hz is negative definite (ND) if  z’Hz < 0   ∀z 

The matrix H must have all its eigenvalues <  0 
 
A quadratic form z’Hz is indefinite if  z’Hz can have positive and negative 
values 

The matrix H must have positive and negative eigenvalues 



Region  J(x) ≤ α 

If the function J(x) is convex in a convex set F, then the set: 

{ }x x F, J(x)∈ ≤ α is convex 

J 

x1 

x2 

α 

J(x) ≤ α 



Set f(x)=0 

In general, a set of points x defined by f(x) = 0 is 
non convex 

Set of points that 
verify f(x1,x2) = 0 

x1 

x2 



Convexity of linear functions 

Regions defined by linear inequalities are convex. They are called 
polytopes. A bounded polytope is called a polyhedron 

x1 

x2 

F 

Linear functions are convex 
(and concave) 

x1 

x2 



Quadratic functions 
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Describes a set in R2 

Quadratic function (form) in R2 

Matrix H defines the 
convexity of the function  

The convexity is global 



Convexity of quadratic regions 

The set x’Hx ≤ 1 is convex if 
the matrix H is real simetric 

positive semidefinite 

H is positive semidefinite if Q(x) = x’Hx ≥ 0  ∀x ≠ 0   , eigenvalues ≥ 0 

H es positive definite if Q(x) = x’Hx > 0  ∀x ≠ 0           , eigenvalues > 0 

H es negative semidefinite if Q(x) = x’Hx ≤ 0  ∀x ≠ 0  , eigenvalues ≤ 0 

H es negative definite if Q(x) = x’Hx < 0  ∀x ≠ 0          , eigenvalues < 0 

The quadratic function Q(x) is PD if H is PD, etc. 



Example 
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Example 
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Indefinite quadratic 
 function 

10,6
x
Jeig

28
82

x
J

2
x
x

28
82

)'x,x(
2
1)x,x(J

2xx8xx)x,x(J

2

2

2

2

2

1
2121

21
2
2

2
121

−=







∂
∂









−

−
=

∂
∂

+















−

−
=

+−+=

Saddle point 



Convexity of general functions 

If J1(x) and J2(x) are convex functions in the convex set F, then          
J1(x) + J2(x) is also convex in F 

If J1(x) and J2(x) are convex functions with an upper bound in the 
convex set F, then  J(x) = max { J1(x), J2(x)} is also convex in F 

If J1(x) y J2(x) are concave functions with a lower bound in the convex 
set F, then  J(x) = min { J1(x), J2(x)} is also concave in F 

If J(x) is convex in the convex set F, then J(Ax+b) is convex 

If J(x) is a convex function in the convex set F, and if V(.) is a non 
decreasing convex function (defined in the range of J), then V[J(x)] is also 
convex F. This is also true if J(x) is concave and V is convex and non 
increasing 



Convexity 
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Convex hull 

The convex hull of F is the 
minimum convex set containing F 

F 

H 



Summary 

 The convexity of a function at a point x can 
be studied by means of its Hessian H 

 A function with continuous hessian H, 
defined in a convex set F (with at least an 
interior point) is convex if, and only if, H is a 
positive semidefinite matrix in F. 

 The set F defined by the expressions gj(x)≤0 
and hi(x)=0 is convex si all gj are convex and 
all hi are linear 



Optimization in a convex set 

If  J is convex in the convex set 
F, then a local minimum is also 
a global one. 
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If all inequality constraints are convex, they 
will generate a convex feasible set F. If any 
equality constraints is non-linear, it will not be 
convex, hence the problem could have local 
minimums.  



Different types of optimization 
problems 
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Optimization with 
equality constraints 

Lagrange 
multipliers 



Different types of optimization 
problems 
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Linear Programming (LP) 
The cost function and the 
constraints are linear 
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+ Quadratic Programming (QP) 
The cost function is quadratic 
and the constraints are linear 



Different types of optimization 
problems 
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Non Linear Programming (NLP) 
The cost function or some 
constraints are non linear 
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Mix Integer Programming (MINLP) 
Some of the variables are integers 
and other are real 



Different types of optimization 
problems 

0)z(r
0)x(g

)x,z(f
dt
zd

)z,x(Jmin

i

j

x

≤

≤

=

Dynamic Optimization 

Some of the constraints are 
given as differential equations 

Ω∈x

)}x(J....),x(J),x(J{min s21x

Multiobjective  Optimization  
There are several cost 
functions to be optimized 
simultaneously 
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