Examen de la Asignatura "Optimización de Procesos"

<u>5º curso de Ingeniería Química</u> **Julio 2011**

Tiempo: 3 h.

Problema 1

Dado el problema de optimización:

$$\max_{\boldsymbol{x}_1, \boldsymbol{x}_2} \ 6\boldsymbol{x}_1^2 + 2\boldsymbol{x}_1\boldsymbol{x}_2 + \boldsymbol{x}_2^2$$

sujeto a:

$$6x_1 + \frac{1}{\text{sen}(x_2)} + \log(x_2) \le 12$$

$$3x_1 + 2x_2 \le 3$$

$$x_2 \ge 0$$

Se pide:

- 1) Estudiar su convexidad
- 2) Decir que tipo de problema es, cuáles son sus variables de decisión y qué métodos serian adecuados para resolverlo
- 3) Formular las condiciones KKT del mismo
- 4) Formular el problema en términos de funciones de penalización

Problema 2

Una empresa química dispone de cuatro plantas de fabricación dentro de un complejo en los que elabora tres productos P1, P2 y P3 de acuerdo a la tabla 1, donde están reflejadas las capacidades máximas de producción en Kg/h de cada uno de los productos, mientras que la tabla 2 muestra el coste de fabricación en €de un kg de los mismos en cada fábrica. Un espacio en blanco significa que ese producto no puede producirse en esa factoría. Igualmente, en la tabla 4 puede verse el coste de transporte en €de un kg de producto desde cada planta de fabricación a cada planta consumidora.

Tabla 1

Productos	Fábrica 1	Fábrica 2	Fábrica 3	Fábrica 4
P1	200	80	220	
P2	125	165		400
P3	150		300	300

Tabla 2

Productos	Fábrica 1	Fábrica 2	Fábrica 3	Fábrica 4
P1	20	8	20	
P2	12	12		40
P3	15		30	32

Otras dos partes del complejo requieren para su funcionamiento los productos P1, P2 y P3, que se demandan de acuerdo a las cifras en kg/h de la tabla 3:

Tabla 3

Periodo	Consumidor 1	Consumidor 2
P1	300	150
P2	250	300
P3	400	250

Tabla 4

Fábrica	Consumidor 1	Consumidor 2
1	3	2
2	5	7
3	4	6
4	5	9

¿Qué cantidad diaria deberá producirse en cada factoría de cada producto y a qué planta consumidora debe enviarse para satisfacer las necesidades de producción a un costo mínimo?

- 1 Formular el problema como uno de optimización.
- 2 ¿Qué tipo de problema resulta? ¿Cuantas y cuáles son las variables de decisión?
- 3 ¿Qué métodos de solución conoces para este problema?
- 4 Escribe un programa en GAMS que resuelva el problema

Examen de la Asignatura "Optimización de Procesos"

5° curso de Ingeniería Química Julio 2011

Tiempo: 1 h.

Cuestiones

1) Escribe el dual de

$$\max_{x_1, x_2, x_3} x_1 - 4x_2$$

$$3x_1 + x_2 \le 8$$

$$x_1 - 2x_2 + x_3 = 6$$

$$3x_1 + 4x_3 \ge 42$$

$$x_1 \ge 0 \quad x_2 \ge 0$$

- 2) ¿Cual es el fundamento del método simplex de optimización no-lineal?
- 3) ¿Cuál es el interés de formular problemas de optimización que sean convexos?
- 4) ¿Cuál es el fundamento del algoritmo Branch and Bound?
- 5) ¿Qué diferencia existe entre las llamadas funciones de penalización y las de barrera?

Problema 1

Problema 2

Definimos:

i tipo de producto (P1, P2, P3)

j planta de producción (1,2,3,4)

k planta consumidora (1,2)

F_{ij} producción kg/h del producto i en la planta j

M_{ij} máxima producción del producto i en la planta j

 x_{ijk} cantidad del producto i enviado desde la planta j al consumidor k

C_{ij} costos de producción del producto i en la factoría j

Dik demanda del producto i por el consumidor k

 $T_{jk}\;\;$ coste de transporte desde la planta j a la k

Se trata de minimizar los costos de producción y distribución de los productos:

$$\min_{F_{ij},x_{ijk}} \quad \sum_{i=1}^4 \ \sum_{i=1}^3 C_{ij} F_{ij} + \sum_{k=1}^2 \ \sum_{j=1}^4 T_{jk} \sum_{i=1}^3 x_{ijk}$$

Se debe cubrir la demanda de cada producto

$$\sum_{i=1}^{4} F_{ij} \ge \sum_{k=1}^{2} D_{ik} \quad i = 1, 2, 3$$

La producción de cada producto en cada factoría debe estar dentro de límites

$$0 \le F_{ij} \le M_{ij}$$
 $i = 1,2,3$ $j = 1,2,3,4$

Los envíos deben satisfacer las demandas

$$\sum_{i=1}^{4} x_{ijk} \ge D_{ik} \quad i = 1, 2, 3, \quad k = 1, 2$$

$$\sum_{k=1}^{2} x_{ijk} \le F_{ij} \quad i = 1,2,3, \quad j = 1,2,3,4$$

$$x_{iik} \ge 0$$