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e Quadratic Programming QP
e \Wolfe method, SLP
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Constraints

Most of the practical decision making problems involve several relations
among variables or constraints in the values they can get.

v'Some are given by balances, physical laws, etc. and appears as model
equations

v'Other are due to the admissible range of the variables
v'Other correspond to operating rules, etc.

Hence, a typical optimization problem with real variables is formulated as:

min J(X)

X Constrained non-linear optimization
h(x)=0 problem: non-linear programming
g(x) <0 NLP
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Constraints

The existence of constraints reduces the searching space but, at the same
time, makes more difficult finding the optimal solution because the zero
gradient optimality criterion is no longer true.

@ Clipping: A policy that first
C/ find the unconstraint
optimum e and then clips the
solution to the feasible set o
leads to wrong results (the

X, optimum is located at ® , not
at o)

Region factible
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Equality constraints

In many problems some of the variables are linked by nature laws,
balances, etc. If there are no other range constraints, the problem is

formulated as:

min J (X) min J (X5 Xy4es X))
X
h (X, %X, ,..,X)=0
h(X) — O hl( 1 2 n) O
Xo s Xopuen, X ) =
If it is possible to work out m 2 (%, X, ) L n>m
variables as a function of the
remaining n-m ones, then the
J y N (Xys Xg ey X, ) = 0]

can be substituted in J(x) and the
problem is converted in an
unconstrained optimization one
with n-m variables Cesar de Prada ISA-UVA



Equality constraints

: 2
min (x,X, +X’) X, - X’ ,
1:%2 = X = = Mmi + X,
x, log x, = X, log X, x log X,

The same happens Iif starting from a value of x;,x,,...,X,, it IS possible
to evaluate J(X;,X,,...,X,) making use of the model h(x) = 0 and a solver
(for instance in a simulation environment). In this case, an unconstraint
optimization algorithm applied with x;,x,,...,X. ., as decision variables
will solve the problem.

Nevertheless, not always is possible to work out n-m variables as
functions of the remaining ones and the use of a simulator may imply
more computations as the Newton’s method, or same variant, must be

used.
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Sequential solution using a
simulator

Unconstraint optimizer of J(X)

with respect to n-m variables
X

Values of J(x)
varlables X;

Numerical solution of h(x) =0
to compute the values of the

remaining m X;
Computation of J(x)
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Lagrange multipliers

1736 -1813

The Lagrange multipliers method provides necessary conditions that the
optimum of a equality constrained optimization problem must fulfil. The
iIdea behind is to convert the original problem into another one with
some additional variables ( the m Lagrange multipliers 4; ) but
unconstrained, and such that the x variables of the solution are the
same as the ones of the original problem with the constraints h(x) = 0

L(x,A) Lagrangian L(X,A)=J(X)+A'h(x)=J(x)+ ikihi (X)

min J(x)} _ _
X = min L(X,A) = minJ(X)+ A"h(x)
h(X) — O X, A X, A
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Lagrange multipliers

The solution of ”X"xn L(X,A) = rglxn J(X) +A'h(x)
OL(X, A oL(X, A «
verifies (x,2) =0, (x,2) =0 = h(x)=0
ax & A ak &

hence, it satisfies the constraints h(x)=0 and minimizes J(x), so it
solves the EC problem
mxin J(X) Notice that for all x such that h(x)=0, it happens:
h(x) =0 mikn L(X,2) =min J(X)

Conversely, if X" is optimum for the original problem, it minimizes J(x") and
complies with h(x") = 0, hence, it must also minimize the Lagrangian L
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Lagrange multipliers

rrx],lxn L(X,A) = n)]lkn J(x) +2'h(x) L(x,A) Lagrangian

The solution of the EC optimization problem can be found solving:

oL(X,A) 0 oL(x,4) _0 = h(x')=0
OX e OL |y

The Newton- Raphson method can be used to solve this set of
algebraic equations. Once the solution Xx',A" has been found, it
IS necessary to check, using the Hessian, that it corresponds to
a minimum of L with respect to x
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Constraint qualification

Analytical solution of the Lagrangian optimum:

oh,(x)  oh,(x) oh, (x)
OX, OX, - OX
Jon, (0 ah,(x) | oh,(x)
OX, OX, | OX
oh, () ah, () oh, ()
OX, OX, OX
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Constraint qualification

a‘](x) _'_}\‘1 ahl(x) +}\‘2 8h2(X) +"'+}\‘m M — O

0X, 0X, 0X4 0X, n+ ”:
equations

&](X)_'_M ahl(x)+}\‘2 5h2(X)+“_+kmahm(X):O andn+m

OX, OX, OX, OX, unknowns

h(x)=0

In order to solve the problem the gradients V,h; must be linearly
independent, condition that is known as constraint qualification.
If not, there would be only n + m -1 unknowns
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Example 1

The qualification
min X. + X \{'\ constraint is

Xpx, Lo ° fulfilled as there is
X:+ X5 =4 Q>< ) only one

Xo=
/ 2=

min L(X;,X,,A) = min X, +X, +A(x* +x% —4)

X1, X5, A X1, X2, A
oL(xh) _,, 2%, =0 oL(xd) _, . 2%, =0 OL(X,A) _ o w2 4 g
OX, X, 1

3\

1+20x, =0 X, =—1/2\ 1K =+1/(2./2)
1+2ax, =0  x,=-1/2x L X, =F/2

X2+x2—4=0| LMZ+1/MF=4] X,=F2
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Example 1

min L(X;,X,,A) = min X, +X, +A(X* +x° —4)

X1,X9,A X1,X9,A
oL (x.3) =1+2)\X, oL(x,3) =1+2)X, oL(x.3) _ X°+x° -4
OX4 OX, ?
oL oL | [ﬁlz 0 }
2
H.(x2) = a>2<1 ax;x2 :{m o} Lo J2/2| PD
o°’L oL 0 2Aj.. |[-/2/2 0 |ND

OXpX,  OXT | 0 —/2/2

It suffices that the minimum be with respect to x
This corresponds to A"=1/(2sqrt(2)): X,=-sqrt(2), x,” = - sqrt(2)
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Economic interpretation of the
Lagrange multipliers / Sensitivities

mxin J (X)} - rmn L(X,A) = rr)zlkn JX)+A'[h(x)-b] L ,A)=J3(X")
o-h-b h(X)=Db

How much does J(x") change if b changes in one unit?

3J(x") _a)(x") ox” ‘
ob ox~ b >
o 0((x)=b) _oh(x')&x" | . Multiplying by 2" and adding:
ob ox ob
oJ(X") _ aJ(X*)H»*'ah()i ) | OX P oL(x ik ) | OX PRI
ob OX OX ob OX ob

The optimal value of the Lagrange multipliers (shadow prices) give the

(opposite) sensitivities of J* with respect to the constraints b
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Lagrange multipliers/ Shadow prices of

LP

Linear programming, LP:

Non-linear Programming
with equality constraints

maxJ =c'X

X - _ min J(X)
Ax=Db How much does J(X) change if b X
x>0 changes in one unit? h(x)=b

The answer (max) using the
duality theory of LP is given
by the solution z, named as

The answrer (min) using the
Lagrangian formulation is given
by the negative Lagrange

shadow prices multipliers -2,
o)’ _ " Lagrange
ob multipliers =
Shadow prices

ai — )\
ob
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Non linear Programming, NLP

mxin J(X)
h(x)=0
g(x)<0

min x* - X,
1

X1:X2
X, +X, =2

2 2
X, +X% <4

X, —1=0

A more general optimization problem includes both types
of constraints, equalities and inequalities, on the real
decision variables x, which it is known as NLP.

Assuming that functions J, g and h are continuously
differentiable, it is possible to formulate necessary (and in
certain cases sufficient) conditions that must be fulfilled by
the optimum point x*. These are known as the Karush-
Kunt-Tucker (KKT) conditions. (Or KTC, Kunt-Tacker

Conditions)
=
Y .
ﬁ %2 X, _____ Feasible set
X1

NIl

X1+X,=2
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Karush(1939) Chicago
Kuhn,Tucker (1951) Berkeley

KKT Optimality conditions

min J (X) The key idea behind KKT conditions is linked to the
X Lagrangian, considering that, if an inequality constraint is
h(x)=0 active at x*, then it can be treated as an equality one,
assigning it a Lagrange multiplier u, while, if it is not active,
g(x)<0 then it can be ignored so that its Lagrange multiplier p must
be zero. In this way, either p or g must be zero.

LA =300+ YAN 0+ X me (0 1g(x)=0

On the other hand, if we increase the right hand side of g(x) < b, then the
feasible region increases, so that J(x) could get a lower value. Hence, the
sensitivity of J to b, given by -u, must be negative, that is, pu > 0.
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KKT Optimality conditions

In this way, the optimal solution of the NLP problem must
min J(x) fulfil the optimality conditions of the Lagrangian L(X,A,u),
X plus the additional conditions that guarantee a minimum.

h(X) =0 With continuously differentiable functions J, h and g, the
g(x)<0 necessary optimality conditions with respect to x are:
o) ..oh 09 ] V300 + 2 AV, h(x) + D iV, g (x) =0
+A—+p'—=0 j i
OX OX OX
h(x)=0 h(x)=0 _— _
<0 Solving this set of equations
g(x)<0 & g;(x) = one can find a possible
n'g(x)=0 ng.(x)=0 optimum x*. Notice that the
n>0 W >0 gradients are required.
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KKT optimality conditions, vector
form

2 1ig;(x) =n'g(x) =0 P DwB oo
i OX  OX ~ OX
b =0 r <= 140;(X) =0 h(x)=0
g;(x) <0 g(x) =<0
) ng(x)=0

Notice that a linear combination of positive or n>0

Vo

zero numbers with positive or zero coefficients
can only be equal to zero if all terms are zero

F=2()'y(x) = > 2y,

VXF — Zzivxyi + (szi)yi — Zlvxy_l_ y'VXZ
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KKT

balll

Non-feasible region wall

————

Equilibrium of forces
Wall

g(x)<0 VI+AVh+uvg =0
h(x)=0 / f N

X1 Slope of J Orthogonal to Orthogonal to
the rall the wall

Only the forces associated
to active walls should be

considered Cesar de Prada ISA-UVA



Constraint Qualifications

Notice that, for the active constraints at the optimum, one can write:

L

So that V,g; y V,h; must be linearly independent in order to have a unique
solution of this systems of equations. This condition is known as the
constraint qualification and can be difficult to verify. Nevertheless, it is
automatically verified:

A
[Vxh(x) ng(x)]|: :|:_Vx‘](x)

v"When the constraints are linear

v'"When the equality constraints are linear and the inequalities are convex
and, in addition, there exist a feasible point in the interior of the feasible
region created by the inequalities.
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At the optimum

Active constraints L :
In a problem with inequality

‘ \ constraints:

V.9.(X) “ V,J(x) =—Zuivx9i(x)

At the optimum x*, for all active
constraints it happens u >0, then the
gradient of J, that is a linear
combination in u of the gradients of

Jj active) MUst be in the opposite half-
plane

xgi(x)

[

Optimum
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First order sufficient KKT conditions

If the function J is convex, the constraints g; are

mxln J(X) convex and the equality constraints h; are linear,

h(x)=0 then the feasible set is convex and there exist a
solution of the KKT conditions that corresponds

g(x)<0 to the global optimum of the NLP problem

Vx‘](x) + Z}\'jvxhj(x) + Z“ivxgi (X) = O

h;(x)=0
9;(x)<0
1ig;(x)=0

b =0
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fMWﬂW .

Example 2

min x* —Xx, | X,
= =—— [Feasible set

X1, X 1

X, + X, = N -

1t X, =2 Q 5 X Does it fulfil the
! first order

2
X, +X; <4 \ W |
X, +X,=2 sufficient

— X, +1< "
1 1<0 J .= conditions? Yes
1=

L(X,A,n) = X2 —
ll) X, — X, +7L(X1+X2—2)+“1(X12+X§_4)+H2(_X +1)
1

V., J(X .
( )+Zj:kjvxhj(x)+zuivxgi(x)=O 2% + A+, 2% —p, =0
h (=0 -1+A+p,2%X, =0

g,(x)<0

— X1+X2:2 “120 HZZO
2 2
X1+X2S4 Hl(X12+Xf—4)=o

K g; (x)=0
>0 -X% +1<0 p,(—x,+1) =0
Cesar de Prada ISA-UVA



Example 2

2%, + A+, 2% —p, =0
—1+A+p,2%, =0

X +X, =2 p, =20 p,=20

X2 +x2 <4 p(x2+x2-4)=0
—X +1<0 pu,(-x,+1) =0

IR
R
2,
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K

(SEe
2(1+u,) 21,

All alternatives must be

if = 0,1, =0

examined in order to find the

solution

x = Mo —\
1 2(1+w,)
1A

B 21,
n, —A +1—k 5

2(1+p) 2y
Hy — A

X2

{_Hz + A
2(1+py)

+1}u2 =0

If u, =0,n, #0

ifu, =0, #0 = <

If u, #0,u, =04

M — A 2 + 1_7‘T —4
2(1+p,) 21,

3 + =

0

2 TR 120
2(1+ Ml)
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How to solve the case pu,=0, p,#0

N

2(1+p,) 21, > 2(1+H12) 2“21
.y 1-A 1-A 1-A

+ =2 2— + =4
2(1+p,) 2y, ) 21, 21,

4+(1_7‘j —41_K+(1_K] =4 ((1—x)—4u1)(1—x)=0{ r=

21, 21, 21, 1-A =4y,
T P 1+p, =-1/4 p, =-5/4NF
2(1+p,)
Ln—apy, > M= Ao Al s 1740 =0

2(1+p) 2y, 2(1+p,)

X, =0,x,=2 NF
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Example 2

1-2 ifu, =0u,=0 {L=1x,=-1/2,x,=5/2NF

2, ifu, =0,p, #0 {7":1’“2:3’_

w—-A 1-A _ _ _ _
P S w, =1/4,2.=0,x, =0,x, =2 NF
2(1+,) 2 if u, #0,n, =0 {
) le _ ' ’ u, =-5/4,L=1NF
, =% J +(1—?»] 4l =] PR #0H 20 f=T =0n, =3, =1, =1
1+p,) 2,

Optimal solution




Constraint qualifications

. 2 A
min X —X, Optimum:  x,=1,%,=1,A=1,11,=0,u,=3 J=0

WY

X+ X, =2 ,———  Active

X, +X5 <4 - constraints

- X% +1<0 |

V,h(x*), V,g(x) (active) There are linearly

17 11 1 1 independent, so the
V.h= V.g= I‘ank|: } =2 constraint qualification
1 0 0 s fulfilled
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Sensitivity

min J(X) From the interpretation of the KKT as
h(x)=b Lagrange multipliers, it is possible to formulate
directly the following relations:
gx)<c
oJ(X) _ oJ (X)) _ —ll*'
ob oc

These relations allow us to compute how the optimal cost changes when
the constraints are relaxed by an unit, which is a very important
information in decision making problems
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Example 2

min J(x,,X,) =min x> - x, | Optimum: x,=1,X,=1,A=1,1,=0,u,=3, J=0
X1, X, X[, X, 1
X, + X, =2 — :
12 22 Active How much changes the
X; +X; <4 / constraints optimal J if the right hand side
— %, +1<0 of the constraints is changed

Sensitivities: -1,0,-3

a

ob

AJ = aJAb
ob

by 0.1 units?

If each one would be increased by an unit,
keeping the other constant, then the first
one would decrease 1*0.1 units the cost
function, the second one would not change
it and the third one would decrease the
optimal cost by 3*0.1 units (in a linear

apprOX|mat|on). Cesar de Prada ISA-UVA



Second order sufficient KKT
conditions (SOSC)

In order to assure that the solution given by the first order KKT conditions is a
minimum, and not a maximum or a saddle point of the Lagrangian
L(x,A, n) in (x*,A*,u*), the second order conditions are formulated.

Second order conditions provide sufficient optimality conditions for the
solution and are given by the following expression involving the Hessian V2 L:

V. h(x )z=0
ZVIL(X' A ,n )z>0  Vz=zO0suchthat]| {V,0g,i(X )z2=0 ;>0
vxgact,i(X* )ZSO Hi =0

So, the Hessian of L with respect to x is required to be PD only in the
direction of all vectors z orthogonal to the gradients of the active constraints
at x*. The necessary condition only required the Hessian to be PSD. (g,

stands for the active constraints)
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Lagrangian

Vx‘J (X) + Z}\‘jvxhj (X) + Zuivxgi (X) =0 {

L(X, M) = X/

Example 2

mlnx —X2
X1, X2
X, +X, =2

’

2 2
X, +X, <4 /

- X% +1<0 |

ZVIL(X A0 )z>0  Vz#0| {

Hessian with respect to x

BBk
- Ox:  O%,0X,
X 2 2
oL a
OX,0% 0%

|

2+21,
0

Active
constraints

0
24

— X, + A(X, + X,

_2)+M1(Xi2 T X22 —4)+, (=% +1)
2% A+ 2% —p, =0
—1+A+p,2%, =0

Optimum: x,=1,x,=1,A=1,u,=0,1,=3

H

2 0
00

|

h(x )} 0
Ve (X)
ol
=0 z,+2,=0
-1 0 z,
-2,=0

z=0

There are no vectors of tangent
planes perpendicular to all active
constraints different from zero to
test the SOSC. So, it is satisfied in
a vacuous way.
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Example 3

2.
X12-X, <

min (x, +3)°+x;| b

X1, X5

L(X, A, p) = (% +3)2 + Xz2 + (=% + X, —2) "‘lvlz(xl2 — X, —4)
2(x,+3)+pu,(-1)+p,2x =0
VxJ(X)+Zj:7‘jvxhj(X)J“Z“ivxgi(x):0 2X, + 1, () +u,(-1) =0

- X, +X,-2<0

X, —X,—4<0

V

h, () =0 (=X, +X%,-2)u, =0 pn, 20
g.(x)<0 (X =X, =4, =0 p, >0
1;9;(x)=0 ~X X, =20
u, >0 X, =X, —4<0
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Example 3

2(X, +3) +p, (1) +p,2x, =0

2X; + 1y (1) + 1, (-1) =0

(=X, +X%X,=2)u; =0 p,; 20
(Xf—Xz—4)u2=0 H, 20
-X;+X,—-2<0

X:—X,—4<0

.

|

-6 2 _Ho My
2(1+p,)

6,

2(1+p,)

If w,=0,u,=0 —->x,=-3Xx,=0 NF

: 6—u
if u,#0,u,=0 1y
Hq H, { 9 5

u1_2=0 —)lel,X1=—5/2,X2=—1/2 NF
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Example 3

X = H,—6
1 2(1+p,)
Ho —Hy
2

;Ml_sz:O

Xy =

6 -,

( n H,
2(1+p,)

2
STl T Sl O T
2(1+p,) 2 ?

If w,=0,un,#0

If p, #0, 1, # 05

(36 _ My
4(1+p,)* 2
us +10ps +17p, =10
u, =—7.58,—2.87,0.46

(X, =-2.06,x, =0.23 NF

6_“1 +M2_H1_2:O
2(1+p,) 2

.

-

—4=0

2
H—=6 | M-y
\2a+ug 2

2
(“22“1 2) _%:4*(%—“1)2:10(%_“1)

M

H, —py =10 S

=W, > WU =2/5p,=2/5]x

=-2,X,=0

Optimum as the
region and J are

+6=0->p, =—14.4 NF

convex
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Constraint qualifications

min (x, +3)% +x2

X1 X2
X +X—=2<0 « Active
X2 —x,—4<0 < constraints

J

V.h(x*), V.g(x") (active)

-1 2(-2) -1
V.9, ={ . } V.9, ={ 1 } rank{ .

Optimum: x,=-2,X,=0,u,=2/5,u,=2/5, J=1

There are linearly

—4 independent, so the
1 =2  constraint gualification
is fulfilled
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Sensitivities

. 2 2)
min (x, +3)" + X, Optimum: x,=-2,%,=0,u,=2/5,u,=2/5, J=1
—X +X,-2<0 « Active
172 = optimal J if the right hand side

J

of the constraints is changed
by an unit?

Sensitivities: -2/5,-2/5
If each right hand side were increased
by one unit, maintaining the other
constant, J would improve (decrease)
by 2/5 in each case
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Lagrangian L(X, &, ) = (X, +3)° + X2+, (=X, + X, —2) +p, (X2 — X, —4)

VX‘J(X)+Z}”vahj(x)+zuivxgi(x)=O {2(X1+3)+M1(—1)+“22X1 —0
Ejemplo 3 24, + 1y (1) 1y (-1) =0

Optimum: x,=-2,X,=0,u,=2/5,u,=2/5, J=1
2° order Conditions

Vh(x)} 0

min (x, +3)% + x2 Z’VIL(X,A ,n)z>0  Vz] {
xgact(x )

X1, Xy

X, +X,—2<0 +r—Active .
' 1
X12 -X,—4<0 ——constraints [_1 1]{22} =0 -2,+2,=0 vectorsof

J tangent
planes
. _ 2(-2) -1] *|=0 —-4z,-z,=0
Hessnangl_rzespectgl_a X [ ] Z, 1 %2
H o - OX2 O 0OX, | |2+2u, Of z=0
X1 L2 oz | 0 2| There are no vectors of tangent planes to
— the active constraints different from zero
OX, 0%, OX5 to test the SOOC: But as H, is PD, any
- - quadratic form is convex in all directions
14/5 0 and the SOSC are satisfied in all
- 0 2 directions.
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Example 4

min xZ —0.1(x, - 4)2\ L=x2-01(x, —4) + u(l— X; — Xzz)
Xq X5 > VLX — [_ 0.2()(1 — 4)— Zuxl (2 — ZH)XZ]
) =02(x —4)-2ux, =0
(2-2u)x, =0 2 possible KKT solutions:

u(l—xf—xg):o X;=1 %X,=0 p=0.3
X;=4 X,=0 p=0

1—(x12 +x22)£ 0

-0.2-2n 0
VL,, ={ } SOSC are necessary to
0 2-2n delucidade which solutions are
correct
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Example 4

N

min x2 —0.1(x, —4)°
172 /

J

1—(x12 +x22)£ 0

=4 x,=0pu=0 J=0
/

Inactive constraint

There is no g to verify the SOSC

ZVIL(X A0 )z>0  Vz#0| { h(x )} =0

_02-2
VL, { "

0 2 —

VLXX(X* ,H*)= [— 8.2

Xg act(X )
0 .
Nevertheless, as zHz is ND for
ZM all directions z, this solution
0 corresponds to a local maximum
2}
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SOSC

Example 4
p Z’VIL(X,A",n)z>0  Vz| { Vh(<) }
XgaCt(X)
min x> —0.1(x, — 4| x=1 x,=0 =03 J=-09

/
.| Active constraint

l—(x12+x22)30
9(x) = - x2 - x¢ )
Vo(x' )z=0 =|-2x -2xf=[-2 OL} 0=2,=0 Z:H

Z
-0.2-2u 0 }
VL :{ , -08 010
XX Z2VL.z=[0 z =
0 2—2“ XX [ { O 14:||:Z

VL, (x* m ): {_0'8 0 } =1.4z*> >0 SOSC are verified

1.4
O Cesar de Prada ISA-UVA



Example 5

V=20V N Find the value of R so that the

— 100 power dissipated in this resistor is
maximized

A

P=1°R } min (;Oigy
+
20 = IR +10| 50
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Solving NLP problems

The analytical solution of a NLP problem is only possible in very

simple problems, but it provides the theoretical framework.

There are several practical alternatives for the numerical solution of

NLP problems:

Use the duality theory
Active set methods
Exploit its particular mathematical structure (QP, Wolfe,..)

Transform the problem in another one without constraints that has
the same solution (Penalty functions)

Solve a series of approximate simpler problems until the solution is
found (SLP, Cutting Plane,..)

Solve the KKT conditions by a succession of approximate
problems (SQP)

Simplify the problem eliminating variables by means of the equality
constraints (GRG)

Interior point methods,
Etc. Cesar de Prada ISA-UVA



Active set Methods

The idea behind active set methods is to partition inequality constraints
Into two sets: those that are considered active and those considered
inactive. The active constraints can be treated as equality ones, while the
iInactive can be, consequently, ignored. The key point is to decide how to
iIncorporate or exclude a constraint to or from the active set.

For simplicity, only inequality constraints will be considered. Equality ones

can be incorporated easily.

mxin J(X)} Be A the subset of
Indexes of the
<
g(X) <0 active constraints.

Then the KKT
conditions are:

V,J(x) + Zuivxgi (x)=0

icA
g.(X)=0 ieA
nw=>0 1€A

g:.(X)<0 igA

=0 1¢A
Cesar de Prada ISA-UVA



Active set Methods

If the active set were known, the problem could be solved as an equality
constrained one. As the active set is not known before solving the problem,
we can guess one, called the working set, W, and solve the corresponding
equality constrained problem.

The working set W is chosen as a subset of the active constraints for the
current point x, in order to guarantee feasibility.

If the corresponding Lagrange multipliers p of the solution are non-negative,
and the other constraints are satisfied, then the solution found is the optimal.

If not, for every ieW such that y, < 0, the value of J can be decreased by
relaxing this constraint, removing it from the working set.

During the intermediate iterations of the algorithm, as x, changes, it is
necessary to check that the remaining constraints are satisfied. If a new

constraint becomes active, it should be incorporated to the working set
Cesar de Prada ISA-UVA



Quadratic Programming (QP)

A special set of optimization problems with many practical applications
corresponds to the case when the cost function is quadratic in the
decision variables, but the constraints are linear. This type of problems
Is known as Quadratic Programming (QP).

min J(X) =c'X+ 1x'Qx Other equivalent formulations can be
X 2 found where the constraints are expressed
AX=D as inequalities, or the cost as
x>0 maximization, _etc. The conversion
- between the different types can be made
: using the same techniques as in LP.
Q (n x n) symmetric

A(mxn)rank m<n
Cesar de Prada ISA-UVA



Quadratic Programming (QP)

X1 Xy

Unlike LP, in the case of QP the optimum x* can be located
either in the border or in the interior of the feasible set

Cesar de Prada ISA-UVA




Quadratic Programming (QP)

mmJOQ=GX+%XQx

Ax—b =0
—x<0

Several solutions methods:

v'Solving the KKT
conditions

v'Active sets

v"More general methods
(Wolfe)

Being A of rank m, the gradients V,h = A,
V.g = -l are independent and the constraint
gualifications are always satisfied.

As the feasible set, if non empty, is convex,
it happens that if the matrix Q is positive
semi-definite, then J is convex in a convex
set and any local solution is a global one,
which can be found solving the KKT
conditions.

If Q is not PSD, then several or none local
optimums can exist and the KKT conditions
are only necessary ones.
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Solving QP using the KKT conditions

(Dantzing-Wolfe)

min J(X) = c'x+%x'Qx Lagrangian:

X l 1 | | |
AX—-b=0 L(X,h,p)=C X+oX Qx+A'(AX—Db)—p'x
-x<0 KKT Conditions :

It is possible to find a feasible solution of C+QX+A%h-—p=0
these linear set of equations in (x,A,u) AX=Db

1L:Jsm_g a simplex phase ’I zipp_roach V\_/hlle x>0, n=0

orcing the condition uw'x=0 in practice by
Imposing that columns corresponding to n'x=0
components of the vector (x,A,u) different
from zero in both x and p are not in the
basis simultaneously, during the pivoting.

Linear equations excepting
u'x =0,= X orp are zero.

Cesar de Prada ISA-UVA



Solving the KKT conditions

C+QX+AAL—pn=0 L=6-0 i ] ;
3 The condition u'x=0 is impose
AX=D = 620,620 by means of rules that select the
x>0, n=0 | Z'=(X,0,0,p) appropriate columns in the

wx=0 pivoting operations

C+Qx+A'(6-8)-pn=0][Q A" —-A" —I
Ax=Db {A 0 0 O
z>0 ) z>0

= & Q X

I

I

Uo

L
N Z
vV N
OI
-

max —(11,...1 : P
Z,v ( )V LP phase | problem, which solution if v’=0,

> provides the solution to the KKT conditions

I M]{:}:B, 2>0,v>0
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Active sets

This method is oriented to solving problems where
the constraints are linear. The idea behind is the fact

that, in every step of the algorithm, the active set min J(x) = C-XJrlx-QX
can be considered as a set of equality constraints, X
while the non-active set can be ignored. AX<Db

Then, at every step of the algorithm, the problem to solve is:

N\

As there are no inequalities, the
- P, problem can be solved easily by
a'x—PB, =0 ieA ) substitution or Lagrange multipliers

min J(X) :c'x+%x'Qx

Where A is the set of indexes of the active set
Cesar de Prada ISA-UVA



Active sets

Choose x, and select A

Solve the problem, P,,
associated to equalities in A. Let
0, be the solution and A, its
Lagrange multipliers.

3. Ifthe A are all >0, and 6, satisfy
all constraints, then 0, Is
optimum.

4.  Conversely, remove the indexes
p, corresponding to those A, <O

from A B —a'x
5. If 0, does not verify a constraint o, =min|1, min P K
that is not in A, compute e, . y<0 i (B = X)
adél the corresponding index to A
6. Do k=k+1 and return to 2 Cesar de Prada ISA-UVA



Example QP (Dynamic) Optimal
controller tuning

W
e u ~ds
—»?— PID Ke™ | G

min je(t)zdt MISE

K, T Tg

K,>0,T,>0,T, >0

error =w -y ( linear function of Kp, Ti, Td)

Cesar de Prada ISA-UVA




Successive linear programming SLP

A natural extension of the Wolfe method that can be applied to a general
NLP problem consist in linearizing J(X) and the constraints around a point
x, forming a LP problem which solution x,” should be closer to the optimal
NLP than the starting point. Next, one makes x,.,=x, and the procedure
IS repeated until an ending condition is met

mxin J(X))
h(x)=0 |~
g(x)<0

mxin J(X,)+V, I(X )X _Xk)\

h(x,)+V,h(x)(Xx-x,)=0

g(X) + V,9(x, )(x = x,) <0

rm<Xx-X, <M

Some extra constraint on the maximum change around the linearization
point are included in order to guarantee an acceptable approximation
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Penalty methods

The core idea is to transform the NLP problem min J(X)
X
Into another one without constraints, which h(x)=0
solution is approximately equal to the one of g(x)<0

the original NLP
minV (x,n) = min 309 + " n, P (h (x), g, ()

Here V is the new unconstraint function to be minimized, which is
formed adding the penalty functions P; to the original cost function J.
n; are adjustable parameters whose values are changed along the
iterations in order to approach the minimum of V to the NLP optimum
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Penalty functions

minV (x,1) = min () + > 1,P (), g, ()

The main characteristic of the penalty functions P is that they tend to be
zero when a constraint is satisfied, but take a large number when the
constraint is violated or closed to be violated. In this way the algorithm
minimizing V will not search in the regions where the constraints are
violated. The penalties P change the shape of the original cost function
J, increasing its value in those regions where the constraints are not
satisfied.

Penalty P P Penalty

function for function for

g, (x) <0 h(x) =0
gi(X) h(x)
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Penalty / Barrier functions

gix) =0

P
External
penalty
gi(x)
(X)) <0
9 P/l Interior or

h(x) =0
Penalty: If the P
constraint is violated, Parabolic
then P takes a large penalty
value. The optimum
may violate slightly the h(X)

constraint

barrier penalty

gi(x)

Barrier: If the value of gi(x)
approach the constraint,
then P takes a large value.
They force x to be in the
interior of the feasible set
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Penalty functions

Equality constraints h(x)=0

If h(x) deviates from the value O, then
the function P grows quadratically,
penalizing the value of V(x) on this
infeasible values. Parameter n gives
the magnitude of the penalty.

If they are several equality
constraints, a term n(h,(x))?> must be
added to J, for each one

Parabolic
penalty nh(x)?

h(x)

P, continuous function with
continuous derivatives

P Absolute
value n|h(x)|,
discontinuous
inh(x) =0

h(x)

Cesar de Prada ISA-UVA



Example with equality constraints

min (X, +3)° + X; - X a2
Original TR Feasible
—X +X,=2=0 problem S e
X1
min (x, +3)° + X5 + (=%, + X, —2)°
X, X)
. . XKy = 2
Problem with the penalty function added

The deformed contours force to
search for the minimum along

the constraint —x,+x,=2 \

(Notice that increasing n also
increases the ill-conditioning of
the new problem)
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Penalty functions

Inequality constraints g(x)<0
Infinite pengtltyhc 00 <0 External P
P(g(4)) = L penaly
10°g(x) if g(x)>0
|
Main drawback: discontinuity at g(x) =0 9(x)
Bracket penalty P
Penalizacion
P(9(x)) = [max(0,9(x))F exterior
Continuous and with continuous derivatives g(x)

As with all penalty functions, small violations of

the constraints may occur
Cesar de Prada ISA-UVA




Penalty functions

Exact Penalty P

In a problem with equalities
and inequalities, the
minimum of the cost function: h(x)

Main drawback:
mxin J(X) + Z o, |h; (X)] + Z c; max(0, g;(x)) discontinuities at
! J' h(x) =0and g(x) =0
coincides exactly with the optimum x* of the

NLP problem if the weights w;, o; satisfy: P

0<o, 2% 0<o 2]

where X", A", p" are the solution of the KKT 9(x)

conditions. Luenberger (1984)
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Inverse Barrier P
1
P(g(x))=—— "+
9(x)
Barrier functions 9(x)
Logarithmic Barrier P | Interioror
barrier function
P(g(x)) =-In(-g(x))
Points located in the interior of the / g(x)
feasible set are favoured, while those
closed to the constraint g(x) are Notice that, with barrier
penalised. An infinite barrier is formed by function, the parameter n
the constraint must be decreased

progressively to allow a
point to be closer to the

P is continuous, but if, for any reason, .
constraints

the constraint is violated, a difficult to
recover situation is created
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Condition number of the Hessian

When the parameter n is
modified to force the points x, of
the algorithm to be close to the
constraints changing the shape
of the contours, the ill-
conditioning of the problem is
increased. A condition number of
10° can be moderately large, 10°
large and 1014 very large so that
methods based on the inverse of
the hessian will not work.
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Penalty functions algorithms

1. Formulate the associated unconstraint problem
with penalty (or barrier) functions

V(xm) = J(x) + Zn; Pi(gi(x),hi(x))
2. Minimize V respect to x for a given

3. Modify each n,, increasing its value if it
corresponds to an exterior penalty function or
decreasing it for barrier functions

4. Check the stopping conditions and, if they are not
fulfilled, return to step 2
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Example with inequality constraints

min (x, +3)? + X . X,2-X, < 4
X, % Original NLP Feasible
X2 —x, ~4<0 problem g .:.'.',:"?-‘.3(2 region

Associated problem with a
guadratic penalty added

min (x, +3)* + x5 +nP(g(x))
Osi x>’—x,—-4<0

P(g(x) =1, 2 :
(X, =X, —4)" si X, —x,—4>0 j
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The minimum of is
located in the
region g(x)<0

1 =5 penalty
V(X):‘](X)+ TIP
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Barrier-penalty functions

The main problem associated to the use of barrier P || Interior or
functions as the Logarithmic Barrier is that it is not barrier function
possible to recover from an infeasible point
P(g(x)) =—In(-g(x)) T e
The barrier-penalty function avoids the problem
P
—nln(— , < — :
P( (x)) - 77(;)( g(x)/€) g(x) £ Barrier-penalty
MY -9 + 7, g(x) > —¢ function
3
With continuous derivative. - 9(x)

If n—>0 and e< n/2A,,,, then the solution
with the barrier-penalty fucntion tends to
the solution of the original problem Cesar de Prada ISA-UVA




Interior point algorithms

: min J(X AE
min J(x) N () min J(x)—n>_In(g;)
hx)=0 = hx)=0 —> h’ ; -1
X) =
e>0 g(x)+e=0

In interior-point solvers, the inequality Z=[x¢g]
constraints are handled implicitly by n,
adding barrier terms to the cost min J(z) —nz In(z,)
function. ? i=1
As n—0 the solution of the modified c(z) =0

problem approaches the original NLP
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Interior point algorithms

1. Formulate the associated equality constrained
problem with barrier functions

V(xn) = I(x) -2 In(x), c(x)=0
Minimize V respect to x for a given n
Modify n, decreasing its value towards 0

Check the stopping conditions and, if they are not
fulfilled, return to step 2

a & W DN
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IPOPT

mind)-ninex) ke -T2 00

— 1
c(x)=0 V.J(X)+A'V c(X)—n|. ; =0
c(x)=0
e'=[1 1 .. 1]
_Xl 0 . 0 Or in matrix form (primal problem):
|0 %2 - O V. J(X)+A'V c(X)-ne'X =0
0 0 X, |
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IPOPT

Direct numerical solution of the VXJ(X) 4+ )JVXC(X) — ne')(‘1 =0
primal problem may be difficult
due to the ill-conditioned surfaces c(x)=0
created by the log terms. In order

to solve the problem, new “dual” v=ne'X™
variables v are created:

Xv =ne
For a given n, IPOPT solves the V.JX)+A'V c(X)-v'=0
primal-dual optimality conditions of Xy = ne
the barrier problem directly using an i
exact Newton method. c(x)=0
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Interior point algorithms

min J(X) KKT of the original
X problem

c(x)=0 —>

x>0

The primal-dual formulation can be
seen as a relaxed form of the KKT
conditions of the original problem,
that converges to these KKT as
n—0. Notice that x must remain > 0
and so v according to its definition.

L=J(X)+A'c(X)—v'X
V.JX)+A'V. c(xX)-v'=0
c(x)=0

Xv=0 v>0 x=0

V.JX)+A'V c(X)-v'=0
c(x)=0
Xv =mne
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IPOPT Solution of the Primal-dual
eguations

V.JX)+A'V c(X)-v'=0 Starting with an initial guess of x, A, v
_ the Newton-step is computed for a
c(X)=0 . . .
fixed n until convergence. Thennis
Xv =ne decreased and the procedure repeated
H Ve -1[Aax] [V IX)+AV.c(X)-V'
| Newton
V.c(X) 0 0 [|AAX [=]c(X) step
-V 0 X ||Av| | Xv-ne |
X ., =X, +aAX,
With H = Hessian of L
V = diag(v) My =y + AL,
It is possible to take advantage of the structure Vi, =V, ta Av,

of the matrices to simplify the computations Cesar de Prada ISA-UVA



Stopping criterion for n

V.JX)+A'V c(X)-v'=0 Starting with an initial guess of x, A, v
_ the Newton-step is computed for a
c(X)=0 . . .
fixed n until convergence. Thennis
Xv =ne decreased and the procedure repeated

For the Newton step, with a fix n, the convergence criterion can be:

c(x)

But notice that a similar criterion can be computed for the optimum
located at n=0, so that the iterations on n can finish when:

c(X)

Xv—neoo}s tol

]
o0

]
o0

maxﬂVXJ(x) +A'V. c(X) - V'

Xv|_}<tol

1
0

1
0

maxﬁVXJ(x) +A'V.c(X) -V
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Information provided by IPOPT

Tol applies to all inf-pr, inf dual, norm X, V
Iter Iteration number

Objetive Original cost function

Inf_pr  Norm of constraints violation

Inf_du  The scaled dual infeasibility at the current point |V J(x) +A'V c(X) - V'

o0

Log(mu) log,, of the value of the barrier parameter n.

| d || norm of Newton step of x, €

Lg(rg) log,, of the value of the regularization term for the Hessian of the
Lagrangian in the augmented system

Alpha_du The step size for the dual variables a.,
Alpha_pr The stepsize for the primal variables o f, h aceptation criteria (Armijo etc)

Ls The number of backtracking line search steps ~ocar de Prada ISA-UVA



Soft and hard constraints

e Often, the constraints are classified as hard and soft
constraints. The first ones are those that, as physical laws,
mass balances, security limits, etc. must be fulfilled exactly.
The second ones, by the contrary, may allow a certain violation
of the limits, e.g. specifications, demands, etc.

e The methods that use penalty functions are very appealing
when there are several constraints that can be violated at a
cost.

e The problems involving penalty functions are denoted
sometimes as “elastic”, because some constraint violation may
occur, in opposition to the “inelastic” methods: the ones that
consider hard constraints
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Feasibility / Slack variables

e An alternative to the penalty functions for dealing with soft
constraints, as well as a way to guarantee the existence of, at
least a feasible solution, with potential infeasible LP, QP, SLP,
SQP, etc., is the formulation of the problem with added slack
variables in the right hand side of the constraints that must be
minimized by adding them to J in an extra term

If there is a solution to the original
min J(X) + oe'e +30'0 problem, the optimal solution of this
X80 one will give € =0, § =0, so that it will
h(x)=¢ correspond to the same solution. But if
g(x) <& the original problem is unfeasible, ¢

and d will increase the feasible region
0=>0 just up to the moment when a feasible

solution exist
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	Optimization with Constraints
	Outline
	Constraints
	Constraints
	Equality constraints
	Equality constraints
	Número de diapositiva 7
	Lagrange multipliers
	Lagrange multipliers
	Lagrange multipliers
	Número de diapositiva 11
	Constraint qualification
	Example 1
	Example 1
	Economic interpretation of the Lagrange multipliers / Sensitivities
	Lagrange multipliers/ Shadow prices of LP
	Non linear Programming, NLP
	Número de diapositiva 18
	KKT Optimality conditions
	Número de diapositiva 20
	Número de diapositiva 21
	Constraint Qualifications
	At the optimum
	First order sufficient KKT conditions
	Example 2
	Example 2
	Número de diapositiva 27
	How to solve the case 2=0, 10
	Example 2
	Número de diapositiva 30
	Sensitivity
	Example 2
	Second order sufficient KKT conditions (SOSC)
	Example 2
	Example 3
	Example 3
	Example 3
	Constraint qualifications
	Sensitivities
	Ejemplo 3
	Example 4
	Example 4
	Número de diapositiva 43
	Example 5
	Solving NLP problems
	Active set Methods
	Active set Methods
	Quadratic Programming (QP)
	Quadratic Programming (QP)
	Quadratic Programming (QP)
	Solving QP using the KKT conditions (Dantzing-Wolfe)
	Solving the KKT conditions
	Active sets
	Active sets
	Example QP (Dynamic) Optimal controller tuning
	Successive linear programming SLP
	Penalty methods
	Penalty functions
	Penalty / Barrier functions
	Penalty functions
	Example with equality constraints
	Example 1
	Penalty functions
	Penalty functions
	Barrier functions
	Condition number of the Hessian
	Penalty functions algorithms
	Example with inequality constraints
	Example 2
	Número de diapositiva 70
	Interior point algorithms
	Número de diapositiva 72
	IPOPT
	IPOPT
	Interior point algorithms
	IPOPT  Solution of the Primal-dual equations
	Stopping criterion for   
	 Information provided by IPOPT
	Soft and hard constraints
	Feasibility / Slack variables

