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Outline

 Constraints
 Equality constraints

– Lagrange multipliers
 More general problems NLP

– Karush-Kuhn-Tucher conditions (KKT, KTC)
 Quadratic Programming QP
 Wolfe method, SLP
 Penalty functions
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Constraints

Most of the practical decision making problems involve several relations  
among variables or constraints in the values they can get.

Some are given by balances, physical laws, etc. and appears as model 
equations

Other are due to the admissible range of the variables

Other correspond to operating rules, etc. 

Hence, a typical optimization problem with real variables is formulated as:

0g(x)
0h(x)

x

≤
=

)(min J
x Constrained non-linear optimization 

problem: non-linear programming  
NLP
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Constraints

The existence of constraints reduces the searching space but, at the same 
time, makes more difficult finding the optimal solution because the zero 
gradient optimality criterion is no longer true.

x1

x2
Clipping: A policy that first 
find the unconstraint 
optimum    and then clips the 
solution to the feasible set     
leads to wrong results  (the 
optimum is located at    , not 
at   )

Región factible
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Equality constraints
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In many problems some of the variables are linked by nature laws, 
balances, etc. If there are no other range constraints, the problem is 
formulated as:
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If it is possible to work out m 
variables as a function of the 
remaining n-m ones, then they 
can be substituted in J(x) and the 
problem is converted in an 
unconstrained optimization one 
with n-m variables
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Equality constraints
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Nevertheless, not always is possible to work out n-m variables as 
functions of the remaining ones and the use of a simulator may imply 
more computations as the Newton’s method, or same variant, must be 
used. 

The same happens if starting from a value of x1,x2,…,xn-m it is possible 
to evaluate J(x1,x2,…,xn) making use of the model h(x) = 0 and a solver 
(for instance in a simulation environment). In this case, an unconstraint 
optimization algorithm applied with x1,x2,…,xn-m as decision variables 
will solve the problem.
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Sequential solution using a  
simulator
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Unconstraint optimizer of J(x) 
with respect to  n-m variables 

xi

Numerical solution of h(x) = 0  
to compute the values of the 

remaining m xi
Computation of J(x)

Values of J(x)n - m 
variables  xi
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Lagrange multipliers

The Lagrange multipliers method provides necessary conditions that the 
optimum of a equality constrained optimization problem must fulfil. The 
idea behind is to convert the original problem into another one with 
some additional variables ( the m Lagrange multipliers λj ) but 
unconstrained, and such that the x variables  of the solution are the 
same as the ones of the original problem with the constraints h(x) = 0







= 0)(
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x
x

J
⇒ )()(min),(min xhλ'xλx

λx,λx,
+= JL
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λ+=+=
m

1i
ii )(h)(J)()(J),(L xxxhλ'xλxL(x,λ) Lagrangian

1736 –1813 
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Lagrange multipliers
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Conversely, if x* is optimum for the original problem, it minimizes J(x*) and 
complies with h(x*) = 0, hence, it must also minimize the Lagrangian L 

Notice that for all x such that  h(x)=0,  it happens:
)(min)(min xλx,

xλx,
JL =

The solution of

0xh0
λ
λx,0

x
λx,

**** λ,xλ,x

=⇒=
∂

∂
=

∂
∂ )()(,)( *LL

verifies

hence, it satisfies the constraints h(x)=0 and minimizes J(x), so it 
solves the EC problem
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Lagrange multipliers

)()(min),(min xhλ'xλx
λx,λx,

+= JL

The solution of the EC optimization problem can be found solving: 

L(x,λ) Lagrangian

0xh0
λ
λx,0

x
λx,

**** λ,xλ,x

=⇒=
∂

∂
=

∂
∂ )()(,)( *LL

The Newton- Raphson method can be used to solve this set of 
algebraic equations. Once the solution  x*,λ* has been found, it 
is necessary to check, using the Hessian, that  it corresponds to 
a minimum of L with respect to x
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Constraint qualification
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Analytical solution of the Lagrangian optimum:
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Constraint qualification
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In order to solve the problem the gradients ∇xhj must be linearly 
independent, condition that is known as constraint qualification.  
If not, there would be only n + m -1 unknowns

n + m 
equations 
and n + m 
unknowns
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Example 1
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The qualification 
constraint is 
fulfilled as there is 
only one
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Example 1
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This corresponds to  λ*=1/(2sqrt(2)):   x1
*= - sqrt(2), x2

* = - sqrt(2)

It suffices that the minimum be with respect to x
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Economic interpretation of the 
Lagrange multipliers / Sensitivities
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Multiplying by λ*’ and adding:

The optimal value of the Lagrange multipliers (shadow prices) give the 
(opposite) sensitivities of J* with respect to the constraints b

b)x(h0 −=
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Lagrange multipliers/ Shadow prices of 
LP

How much does J(x*) change if b 
changes in one unit?

Linear programming, LP: Non-linear Programming 
with equality constraints
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The answer (max) using the 
duality theory of LP is  given 
by the solution z, named as 
shadow prices

The answrer (min) using the 
Lagrangian formulation is given 
by the negative Lagrange 
multipliers -λ, 
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λ
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Lagrange 
multipliers = 
Shadow prices
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Non linear Programming, NLP

0g(x)
0h(x)

x

≤
=

)(min J
x

A more general optimization problem includes both types 
of constraints, equalities and inequalities, on the real 
decision variables x, which it is known as NLP.

Assuming that functions J, g and h are continuously 
differentiable, it is possible to formulate necessary (and in 
certain cases sufficient) conditions that must be fulfilled by 
the optimum point x*. These are known as the Karush-
Kunt-Tucker (KKT) conditions. (Or KTC, Kunt-Tacker 
Conditions)
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KKT Optimality conditions

0g(x)
0h(x)

x

≤
=

)(min J
x

The key idea behind KKT conditions is linked to the 
Lagrangian, considering that, if an inequality constraint is 
active at x*, then it can be treated as an equality one, 
assigning it a Lagrange multiplier µ, while, if it is not active, 
then it can be ignored so that its Lagrange multiplier µ must 
be zero. In this way, either µ or g must be zero. 

0)()()()(),,( =µµ+λ+= ∑∑ xgghJL ii
i

ii
j

jj xxxμλx

On the other hand, if we increase the right hand side of g(x) ≤ b, then the 
feasible region increases, so that J(x) could get a lower value. Hence, the 
sensitivity of J to b, given by  -µ, must be negative, that is, µ ≥ 0.

Karush(1939)  Chicago  
Kuhn,Tucker (1951)  Berkeley
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KKT Optimality conditions

0g(x)
0h(x)
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In this way, the optimal solution of the NLP problem must 
fulfil the optimality conditions of the Lagrangian L(x,λ,µ), 
plus the additional conditions that guarantee a minimum. 

With continuously differentiable functions J, h and g, the 
necessary optimality conditions with respect to x are:
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Solving this set of equations 
one can find a possible 
optimum x*. Notice that the 
gradients are required.
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KKT optimality conditions, vector 
form
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zero numbers with positive or zero coefficients
can only be equal to zero if all terms are zero
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KKT

Cesar de Prada ISA-UVA

x1

x2

Non-feasible region

ball
wall

Wall
g(x) ≤ 0

Wall
Equilibrium of forces

𝛻𝛻𝐽𝐽 + 𝜆𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇𝜇𝜇 = 0Rail
h(x)=0

J 
contours

Orthogonal to 
the wall

Orthogonal to 
the  rail

Slope of J

Only the forces associated 
to active walls should be 
considered
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Constraint Qualifications

Notice that, for the active constraints at the optimum, one can write:

So that ∇xgi y ∇xhj must be linearly independent in order to have a unique 
solution of this systems of equations. This condition is known as the 
constraint qualification and can be difficult to verify. Nevertheless, it is 
automatically verified:

When the constraints are linear

When the equality constraints are linear and the inequalities are convex 
and, in addition, there exist a feasible point in the interior of the feasible 
region created by the inequalities.

[ ] )(J)(g)(h xxx xxx −∇=
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At the optimum

∑ ∇µ−=∇
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Optimum

Active constraints

At the optimum x*, for all active 
constraints it happens µ >0, then the 
gradient of J, that is a linear 
combination in µ of the gradients of 
gj (active), must be in the opposite half-
plane

In a problem with inequality 
constraints:
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First order sufficient KKT conditions

0g(x)
0h(x)
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If the function J is convex, the constraints gi are 
convex and the equality constraints hj are linear, 
then the feasible set is convex and there exist a 
solution of the KKT conditions that corresponds 
to the global optimum of the  NLP problem
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Example 2
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first order 
sufficient 
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Example 2
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Constraint qualifications
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There are linearly 
independent, so the 
constraint qualification 
is fulfilled

∇xh(x*),  ∇xg(x*) (active)
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Sensitivity

cg(x)
bh(x)

x
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)(min J
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')(')( *
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xλ

b
x

−=
∂

∂
−=

∂
∂ JJ

From the interpretation of the KKT as 
Lagrange multipliers, it is possible to formulate 
directly the following relations:

These relations allow us to compute how the optimal cost changes when 
the constraints are relaxed by an unit, which is a very important 
information in decision making problems
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Example 2
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How much changes the 
optimal J if the right hand side 
of the constraints is changed 
by 0.1 units?

Sensitivities: -1,0,-3 If each one would be increased by an unit, 
keeping the other constant, then the first 
one would decrease 1*0.1 units the cost 
function, the second one would not change 
it and the third one would decrease the 
optimal cost by 3*0.1 units (in a linear 
approximation).
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Second order sufficient KKT 
conditions (SOSC)

In order to assure that the solution given by the first order KKT conditions is a 
minimum, and not a maximum or a saddle point of the Lagrangian          
L(x,λ, µ) in (x*,λ*,µ*), the second order conditions are formulated.  

Second order conditions provide sufficient optimality conditions for the 
solution and are given by the following expression involving the Hessian ∇2

xL:









=µ≤∇
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00
00

0
such that 002

i
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i
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*
x

***
x

)(g
)(g

)(
|),,(L'

zx
zx

zxh
zzμλxz

So, the Hessian of L with respect to x is required to be PD only in the 
direction of  all vectors z orthogonal to the gradients of the active constraints 
at x*. The necessary condition only required the Hessian to be PSD. (gact
stands for the active constraints)
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Example 2
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There are no vectors of tangent 
planes perpendicular to all active 
constraints different from zero to 
test the SOSC. So, it is satisfied in 
a vacuous way.
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Example 3
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Example 3
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Example 3
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Constraint qualifications
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Sensitivities

How much changes the 
optimal J if the right hand side 
of the constraints is changed 
by an unit?

Sensitivities: -2/5,-2/5
If each right hand side were increased 
by one unit, maintaining the other 
constant, J would improve (decrease) 
by 2/5 in each case










≤−−

≤−+−

++

04
02

)3(min

2
2
1

21

2
2

2
1, 21

xx
xx

xx
xx Optimum: x1=-2,x2=0,µ1=2/5,µ2=2/5, J=1

Active 
constraints



Cesar de Prada ISA-UVA40

Ejemplo 3
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There are no vectors of tangent planes to 
the active constraints different from zero 
to test the SOOC: But as Hx is PD, any 
quadratic form is convex in all directions 
and the SOSC are satisfied in all 
directions. 
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Example 4
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Example 5

V=20V +
-

R

10Ω

i

Find the value of R so that the 
power dissipated in this resistor is 
maximized
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Solving NLP problems

 The analytical solution of a NLP problem is only possible in very 
simple problems, but it provides the theoretical framework.

 There are several practical alternatives for the  numerical solution of 
NLP problems:

– Use the duality theory
– Active set methods
– Exploit its particular mathematical structure (QP, Wolfe,..)
– Transform the problem in another one without constraints that has 

the same solution (Penalty functions)
– Solve a series of approximate simpler problems until the solution is 

found (SLP, Cutting Plane,..)
– Solve the KKT conditions by a succession of approximate 

problems (SQP)
– Simplify the problem eliminating variables by means of the equality 

constraints (GRG)
– Interior point methods, 
– Etc.
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Active set Methods

The idea behind active set methods is to partition inequality constraints 
into two sets: those that are considered active and those considered 
inactive. The active constraints can be treated as equality ones, while the 
inactive can be, consequently, ignored. The key point is to decide how to 
incorporate or exclude a constraint to or from the active set.
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≤ 0xg

x
x

)(

)(Jmin

For simplicity, only inequality constraints will be considered. Equality ones 
can be incorporated easily.
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Active set Methods

If the active set were known, the problem could be solved as an equality 
constrained one. As the active set is not known before solving the problem, 
we can guess one, called the working set, W, and solve the corresponding 
equality constrained problem. 

The working set W is chosen as a subset of the active constraints for the 
current point xk in order to guarantee feasibility.

If the corresponding Lagrange multipliers µ of the solution are non-negative, 
and the other constraints are satisfied, then the solution found is the optimal.

If not, for every i∈W such that µI < 0, the value of J can be decreased by 
relaxing this constraint, removing it from the working set.

During the intermediate iterations of the algorithm, as xk changes, it is 
necessary to check that the remaining constraints are satisfied. If a new 
constraint becomes active, it should be incorporated to the working set
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Quadratic Programming (QP)

A special set of optimization problems with many practical applications 
corresponds to the case when the cost function is quadratic in the 
decision variables, but the constraints are linear. This type of problems 
is known as Quadratic Programming (QP).

Other equivalent formulations can be 
found where the constraints are expressed 
as inequalities, or the cost as 
maximization, etc. The conversion 
between the different types can be made 
using the same techniques as in LP.

Q (n x n) symmetric

A (m x n) rank m < n

0

'
2
1)(min

≥
=

+=

x
bAx

Qxxxc'xJ
x
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Quadratic Programming (QP)

x1

x2

x*

Unlike LP, in the case of QP the optimum x* can be located 
either in the border or in the interior of the feasible set

x1

x2

x*
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Quadratic Programming (QP)

0

'
2
1)(min

≤−
=−

+=

x
0bAx

Qxxxc'xJ
x

Being A of rank m, the gradients ∇xh = A, 
∇xg = -I are independent and the constraint 
qualifications are always satisfied.

As the feasible set, if non empty, is convex, 
it happens that if the matrix Q is positive 
semi-definite, then J is convex in a convex 
set and any local solution is a global one, 
which can be found solving the KKT 
conditions.

If Q is not PSD, then several or none local 
optimums can exist and the KKT conditions 
are only necessary ones.

Several solutions methods:

Solving the KKT 
conditions

Active sets

More general methods 
(Wolfe)

…..
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Solving QP using the KKT conditions 
(Dantzing-Wolfe)

0

'
2
1)(min

≤−
=−

+=

x
0bAx

Qxxxc'xJ
x

xμ'bAxλQxxxc'μλx −−++= )(''
2
1),,(L

Lagrangian:

KKT Conditions :

0
,

'

=
≥≥

=
=−++

xμ'
0μ0x

bAx
0μλAQxc

Linear equations excepting 
µ’x = 0, ⇒ xi or µi are zero. 

It is possible to find a feasible solution of 
these linear set of equations in (x,λ,µ)
using a simplex phase I approach while 
forcing the  condition µ’x=0 in practice by 
imposing that columns corresponding to 
components of the vector (x,λ,µ) different 
from zero in both x and µ are not in the  
basis simultaneously, during the pivoting.
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Solving the KKT conditions
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0
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The condition µ’x=0 is imposed 
by means of rules that select the 
appropriate columns in the 
pivoting operations

[ ] 







≥≥=








−

0,

)1,...1,1(max

ν0zβ,
z
ν

MI

ν
νz, LP phase I problem, which solution if ν*=0, 

provides the solution to the KKT conditions

Mz = β
z ≥ 0
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Active sets

This method is oriented to solving problems where 
the constraints are linear. The idea behind is the fact 
that, in every step of the algorithm, the active set 
can be considered as a set of equality constraints, 
while the non-active set can be ignored. 

Then, at every step of the algorithm, the problem to solve is:

Λ







Λ∈=β−

+=
P

i

J

i 0'

'
2
1)(min

xa

Qxxxc'x

i

x

As there are no inequalities, the 
problem can be solved easily by 
substitution or Lagrange multipliers

bAx

Qxxxc'x

≤

+= '
2
1)(Jmin

x

Where Λ is the set of indexes of the active set
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Active sets

1. Choose xk and select Λ
2. Solve the problem, PΛ, 

associated to equalities in Λ. Let 
θk be the solution and  λk its 
Lagrange multipliers.

3. If the λk are all  ≥ 0, and θk satisfy 
all constraints, then θk is 
optimum.

4. Conversely, remove the indexes 
p, corresponding to those λk < 0 
from Λ

5. If θk does not verify a constraint 
that is not in Λ, compute 
xk+1=xk+αk(θk-xk)  with (αk <1) and 
add the corresponding index to Λ

6. Do k=k+1 and return to 2

x1

x2

θk

xk

xk+1















−
−

=α
<−

Λ∉ )(
min,1min

0)( kk

i

ik
β

k
xθ'a
x'a

i

ki

xθ'a ki
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Example QP (Dynamic) Optimal 
controller tuning

Ke
s

ds−

+τ 1
PID +

w ye u

w
y

error = w - y ( linear function of Kp , Ti,  Td  )

0,0,0

MISE   )(min

p

2

,,

≥≥≥

∫
di

TTK

TTK

dtte
dip
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Successive linear programming SLP

Mxxm
0xxxgxg
0xxxhxh

xxxx

0g(x)
0h(x)

x

≤−≤








≤−∇+
=−∇+

−∇+

≈








≤
= k

kkxk

kkxk

kkxkxx
JJJ

))(()(
))(()(

))(()(min)(min

A natural extension of the Wolfe method that can be applied to a general 
NLP problem consist in linearizing J(x) and the constraints around a point 
xk forming a LP problem which solution xk

* should be closer to the optimal 
NLP than the starting point. Next, one makes xk+1=xk

* and the procedure 
is repeated until an ending condition is met

Some extra constraint on the maximum change around the linearization 
point are included in order to guarantee an acceptable approximation
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Penalty methods

The core idea is to transform the NLP problem

0g(x)
0h(x)

x

≤
=

)(min J
x

Into another one without constraints, which 
solution is approximately equal to the one of 
the original NLP

∑η+=η
i

iiiixx
ghPJV ),()(min),(min (x)(x)xx

Here V is the new unconstraint function to be minimized, which is 
formed adding the penalty functions Pi to the original cost function J. 
ηi are adjustable parameters whose values are changed along the 
iterations in order to approach the minimum of V to the NLP optimum
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Penalty functions

The main characteristic of the penalty functions P is that they tend to be  
zero when a constraint is satisfied, but take a large number when the 
constraint is violated or closed to be violated. In this way the algorithm 
minimizing V will not search in the regions where the constraints are 
violated. The penalties P change the shape of the original cost function 
J, increasing its value in those regions where the constraints are not 
satisfied.

∑η+=η
i

iiiixx
ghPJV ),()(min),(min (x)(x)xx

gi(x)

PPenalty 
function for 
gi (x) ≤ 0

h(x)

P Penalty 
function for 
h(x) = 0
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Penalty / Barrier functions

gi(x)

P

gi(x)

P

External 
penalty

Interior or 
barrier penalty

h(x)

P
Parabolic 
penalty

Penalty: If the 
constraint is violated, 
then P takes a large 
value. The optimum 
may violate slightly the 
constraint

h(x) = 0gi(x) ≤ 0

gi(x) ≤ 0
Barrier: If the value of gi(x) 
approach the constraint, 
then P takes a large value. 
They force x to be in the 
interior of the feasible set
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Penalty functions

0)( =xhEquality constraints

h(x)

P
Parabolic 
penalty ηh(x)2

If h(x) deviates from the value 0, then 
the function P grows quadratically, 
penalizing the value of V(x) on this 
infeasible values. Parameter η gives 
the magnitude of the penalty.

P, continuous function with 
continuous derivatives

If they are several equality 
constraints, a term η(hi(x))2 must be 
added to J, for each one

h(x)

P Absolute 
value η|h(x)|, 
discontinuous 
in h(x) = 0
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Example with equality constraints







=−+−

++

02

)3(min

21

2
2

2
1, 21

xx

xx
xx

x1

-x1+x2 = 2x2Original 
problem

2
21

2
2

2
1,

)2()3(min
21

−+−η+++ xxxx
xx

Matlab

x1

-x1+x2 = 2
x2

The deformed contours force to 
search for the minimum along 
the constraint  –x1+x2=2 

(Notice that increasing η also 
increases the ill-conditioning of 
the new problem)

Feasible 
set

Problem with the penalty function added
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Example 1

η =0 original 
function J(x)

η =1 Penalty 
function 
V(x)=J(x)+ ηP

η =10 Penalty 
function 
V(x)=J(x)+ ηP

The minimum of  
J(x) is located 
around h(x)=0
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Penalty functions
0)( ≤xgInequality constraints

P
External 
penalty

Infinite penalty

g(x)




>
≤

=
0)(g fi)(g10

0)(g fi0
))(g(P 20 xx

x
x

Main drawback: discontinuity at g(x) = 0

P
Penalización 
exterior

Bracket penalty

g(x)

[ ]2))(g,0max())(g(P xx =

Continuous and with continuous derivatives

As with all penalty functions, small violations of 
the constraints may occur
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Penalty functions

P

Main drawback: 
discontinuities at 
h(x) = 0 and g(x) = 0

g(x)

Exact Penalty

In a problem with equalities 
and inequalities, the 
minimum of the cost function:

∑∑ σ+ω+
j

ji
i

ii ghJ ))(,0max()()(min xxx
x

coincides exactly with the optimum x* of the 
NLP problem if the weights  ωi, σj satisfy:

** 00 iiii µ≥σ≤λ≥ω≤

where x*,λ*, µ* are the solution of the KKT 
conditions. Luenberger (1984)

h(x)

P
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g(x)

P Interior or 
barrier function

Logarithmic Barrier

))(ln())(( xx ggP −−=

Points located in the interior of the 
feasible set are favoured, while those 
closed to the constraint g(x) are 
penalised. An infinite barrier is formed by 
the constraint

P is continuous, but if, for any reason, 
the constraint is violated, a difficult to 
recover situation is created

Barrier functions

Notice that, with barrier 
function, the parameter η
must be decreased 
progressively to allow a 
point to be closer to the 
constraints

Inverse Barrier

)(g
1))(g(P
x

x −=

g(x)

P
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Condition number of the Hessian

When the parameter η is 
modified to force the points xk of 
the algorithm to be close to the 
constraints changing  the shape 
of the contours, the ill-
conditioning of the problem is 
increased. A condition number of 
105 can be moderately large, 109

large and 1014 very large so that 
methods based on the inverse of 
the hessian will not work.

x1

-x1+x2 = 2
x2
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Penalty functions algorithms

1. Formulate the associated unconstraint problem 
with penalty (or barrier) functions 

V(x,η) = J(x) + Σηi Pi(gi(x),hi(x))
2. Minimize V respect to x for a given ηi

3. Modify each ηI, increasing its value if it 
corresponds to an exterior penalty function or 
decreasing it for barrier functions

4. Check the stopping conditions and, if they are not 
fulfilled, return to step 2 
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Example with inequality constraints
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Associated problem with a 
quadratic penalty added
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Example 2

η =0 original 
function J(x)

η =5  penalty 
function 
V(x)=J(x)+ ηP

The minimum of is 
located in the 
region g(x)≤0

-3 -2 -1 0 1 2
-6

-5

-4

-3

-2

-1

0

-4
-2

0
2

4

-6
-4

-2
0

2
0

200

400

600

800
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Barrier-penalty functions
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g(x)

P Interior or 
barrier function

The main problem associated to the use of barrier 
functions as the Logarithmic Barrier is that it is not 
possible to recover from an infeasible point

))(ln())(( xx ggP −−=

g(x)

P

Barrier-penalty 
function

-ε

The barrier-penalty function avoids the problem

With continuous derivative. 
If η→0 and ε< η/2λmax then the solution
with the barrier-penalty fucntion tends to
the solution of the original problem

𝜂𝜂𝑃𝑃 𝑔𝑔 𝑥𝑥 = �
−𝜂𝜂 ln −𝑔𝑔(𝑥𝑥)/𝜀𝜀 , 𝑔𝑔 𝑥𝑥 ≤ −𝜀𝜀
𝜂𝜂𝜂𝜂 𝑥𝑥
𝜀𝜀 + 𝜂𝜂, 𝑔𝑔 𝑥𝑥 > −𝜀𝜀



Interior point algorithms
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0g(x)
0h(x)

x

≤
=

)(min J
x

0ε
0εg(x)

0h(x)

x

≥
=+

=
ε

)(Jmin
,x

0εxg
0h(x)

x

=+
=

εη− ∑
ε

=
ε

)(

)ln()(Jmin
n

1i
i,x

0c(z)

z

εxz

=

η−

=

∑
=

zn

1i
iz
)zln()(Jmin

],[In interior-point solvers, the inequality 
constraints are handled implicitly by 
adding barrier terms to the cost 
function. 
As η→0 the solution of the modified
problem approaches the original NLP
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Interior point algorithms

1. Formulate the associated equality constrained  
problem with barrier functions 

2. V(x,η) = J(x) - ηΣ ln(xi) ,     c(x) = 0      
3. Minimize V respect to x for a given η
4. Modify η, decreasing its value towards 0
5. Check the stopping conditions and, if they are not 

fulfilled, return to step 2 



IPOPT
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Or in matrix form (primal problem):
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0c(x)
0excλx

=
=η−∇+∇ −1

xx X')(')(JDirect numerical solution of the 
primal problem may be difficult 
due to the ill-conditioned surfaces 
created by the log terms. In order 
to solve the problem, new “dual” 
variables ν are created: eν

eν
η=

η= −

X
X'' 1

0c(x)
eν

0νxcλx

=
η=

=−∇+∇
X

')(')(J xxFor a given η, IPOPT solves the 
primal-dual optimality conditions of 
the barrier problem directly using an 
exact Newton method.



Interior point algorithms
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0x
0c(x)

x

≥
=

)(Jmin
x

75

The primal-dual formulation can be 
seen as a relaxed form of the KKT 
conditions of the original problem, 
that converges to these KKT as 
η→0.  Notice that x must remain > 0 
and so ν according to its definition.

0x0ν0ν
0c(x)

0νxcλx
xνxcλx

≥≥=
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−+=

X

')(')(J
')(')(JL

xx

KKT of the original 
problem

eν
0c(x)

0νxcλx

η=
=

=−∇+∇

X
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IPOPT  Solution of the Primal-dual 
equations
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eν
0c(x)

0νxcλx

η=
=

=−∇+∇

X

')(')(J xx Starting with an initial guess of x, λ, ν
the Newton-step is computed for a 
fixed η until convergence. Then η is 
decreased and the procedure repeated
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With H = Hessian of L          
V = diag(ν)
It is possible to take advantage of the structure 
of the matrices to simplify the computations

Newton 
step
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xxx
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Stopping criterion for η
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eν
0c(x)

0νxcλx

η=
=

=−∇+∇

X

')(')(J xx Starting with an initial guess of x, λ, ν
the Newton-step is computed for a 
fixed η until convergence. Then η is 
decreased and the procedure repeated

For the Newton step, with a fix η, the convergence criterion can be:

{ } tolX,,')(')(Jmax xx ≤η−−∇+∇
∞∞∞

eνc(x)νxcλx

But notice that a similar criterion can be computed for the optimum 
located at η=0, so that the iterations on η can finish when:

{ } tolX,,')(')(Jmax xx ≤−∇+∇
∞∞∞

νc(x)νxcλx



Information provided by IPOPT
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Tol applies to all inf-pr, inf dual, norm X, V

Iter Iteration number

Objetive  Original cost function

Inf_pr Norm of constraints violation

Inf_du The scaled dual infeasibility at the current point

Log(mu)    log10 of the value of the barrier parameter η.

|| d || norm of Newton step of x, ε

Lg(rg) log10 of the value of the regularization term for the Hessian of the 
Lagrangian in the augmented system

Alpha_du The step size for the dual variables  αν

Alpha_pr The stepsize for the primal variables α f, h  aceptation criteria (Armijo etc)

Ls The number of backtracking line search steps

∞
−∇+∇ ')(')(J xx νxcλx
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Soft and hard constraints

 Often, the constraints are classified as hard and soft 
constraints. The first ones are those that, as physical laws, 
mass balances, security limits, etc. must be fulfilled exactly. 
The second ones, by the contrary, may allow a certain violation 
of the limits, e.g. specifications, demands, etc. 

 The methods that use penalty functions are very appealing 
when there are several constraints that can be violated at a 
cost. 

 The problems involving penalty functions are denoted 
sometimes as “elastic”, because some constraint violation may 
occur, in opposition to the “inelastic” methods: the ones that 
consider hard constraints
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Feasibility / Slack variables

 An alternative to the penalty functions for dealing with soft 
constraints, as well as a way to guarantee the existence of, at 
least a feasible solution, with potential infeasible LP, QP, SLP, 
SQP, etc., is the formulation of the problem with added slack 
variables in the right hand side of the constraints that must be 
minimized by adding them to J in an extra term

0δ
δg(x)
εh(x)

δδ'εε'x

≥
≤
=

β+α+
δε

)(Jmin
,,x

If there is a solution to the original 
problem, the optimal solution of this 
one will give  ε = 0, δ = 0, so that it will 
correspond to the same solution. But if 
the original problem is unfeasible, ε
and δ will increase the feasible region 
just up to the moment when a feasible 
solution exist
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