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Introduction
«_«_ 7

e In most of the practical problems, the decision
variables can not be chosen freely, but they must
complain with a set of constraints expressed as
equality or inequality equations.

e \When the cost function and the constraint equations
are linear in the decision variables, the optimization
problem is called linear programming (LP)

e The term mathematical programming is related to
the techniques developed during the Il World War
with the purpose of optimizing the planning
(programming) of flights of military planes.
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Every m? of silk need
to be processed in
M!, M2, M3. The
same with cotton in

Example  wim2

benefit 6 €/m?2

m2 of cotton A
benefit 4:€/m'2

Processing availability in h per week of every
time of every machine (h)
m? (h)

m? of silk S

- Factory
- Machine |

How many m? of
each type must be
manufactured weekly
in order to achieve
the maximum
benefit?

X, m? of silk per week

X, m? of cotton per
week
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Example

Processing
time of every
m? (h)

availability in h per week of every
machine (h)

m2 of silk S

benefit 6 €/m?2

m2 of cotton A

benefit 4:€/m'2

max 6x, +4x,
sujetoa:

2X, +4x, <48
4x, +2X, <60
3x, <42

X, =0

X, 20
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LP Problems

max !xl + !xz

under :
2X, +4X, <48

2 4
AX, +2x,<60 — |, 5
3X, <42 30
X, 20 X0
X, 20

The same LP problem can be
formulated in several
equivalent formats

Xl
max (6,4) '

X 48 — AX<Db
1)3 60

X2

zj maxc'x

X

x=0
42
Standard
format
minc'x  imaxc'x; maxc'x
Ax<b  Ax=bi Ax>Db
X>0 x>0 X>0
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LP transformations
« /—/—/////']

Maximize / minimize maxc'xX = min (—C'X)
X X
Inequalities 3x, +5X, <7 = -3X,—5X,>-7
" 3X, +5X, +e=7
Equalitie 1 2
Inequalities >0
(slack)
3 c <7 variable eis
X, +5X, —g <
3x, +5x, =7 = 1 2 added
>0
Unconstraint X, = X, =X,—X; X,>0,%X,>0
variable
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LP Transformations

X |
max (6,4)( lJ = max 6x, +4Xx, +0x, +0x, +0x,/ = max ¢'X
X X X : X

2 i X
2 4 . 48 2% +4%, +X; =48 2 4 1 0 0\x, | (48
4 2(X1]§ 60 :>4x1+2x2+x4:60:> 4 2 01 0|x,|=]|60
3 0)°% \42) 3 +0x,+%=42 (3 0 0 0 1)x | (42
X,>0 x,>0 X, 20 X,>0 x>0 | X,
x>0
maxc'x
i The original problem is converted into
Ax=Db standard form increasing the number of

x>0, b>0 decision variables with the three slack

variables X3, X4, Xs
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LP Transformations

max (3,2) = max 3X, +0x; +2X, —2X. =max c'X
2X, —4x, <48 2X, —4X, + X, +4X; = —48) —2X, +4X, — 4X; — X, = 48)
4, +2X, =60 ; = 4x +2X,-2% =60 ; = 4x +2X,-2Xx. =60
20 | X, = X, — Xg =] (X1 X5,%,,%:)' >0
X, unconstraint X;20 x,20 x.>0
(X, ) maxc'x
-2 -1 4 -4\ X, _ 48 Ax = b
4 0 2 -2)x, 60 x>0 b>0
\ X5/
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Geometric solutions

max 6x, +4x,
under:
2X, +4x, <48

X714
, 4X,+ 2%, <60
gi?i't;’lg 2x,+4x,=48 3x, < 42
X, 20
= X, >0
! The feasible region is a
AX,+2X,=60 polytope
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Geometric solutions

Region
factible

max 6x, +4x,
under:

2X, +4x, <48
4X, +2X, <60
3X, <42

X, 20

X, 20

The solution is

6X,+4X,=J;

located in a vertex
6X;+4X%,=J,> J; | of the feasible
region
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Feasible region

Inequalities

The feasible region is a
polytope in R"

minc'x
X

X1 Ax<b
x>0
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LP Problems
«_ /'

X X2

v  olngle X" Multiple
AN optimum N solutions
X4 X1

The optimal solution, if it exist,
IS located in a vertex of the

polytope

The feasible region is a
polytope in R"
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Constraints

= Feasible
region

LP problem with unbounded
cost function. There is no
solution: The LP problem has
no solution: there is no
feasible x such that J(x) is
greater than the value of the
function at any other point

An LP problem may have
also no solution because
the feasible set is empty
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Vertices

X, An active constraint in
X means that the
constraint is satisfied
as an equality vertex

vertex
X4 X
X2

If X IS a vertex, it is
placed in the
Intersection of two active
and independent
constraints

In R" a vertex is defined as the common
point of, at least, n independent and
active constraints
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Standard LP Problem
«_ /'

A(m x n)

a, X +a,X, +..+a,X, =b
max J =c'X x(n x 1)
X

1n “*n

Ay X + 850X, +.c+ 8, X, =D,

2n*n

AX =b Rank(A)=m
x>0 n>m QX F 8y Xy oo+ X, =D,
b>0

If n = m there is only a single solution and if n < m likely there will be no
solution at all. So, the only case that is worth to consider is when n > m

A constraint that is linear combination of other ones is redundant and can be
suppressed. This explains the condition rank(A) = m

The standard LP problem has n+m constraints, m are equality constraints

and n are inequality ones. Notice that it is formulated as a maximization one.
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Region
factible

Example IR O
] 2\

max J =6x, +4x, +0x, +0x, +0x, =max J =C'X
X

X

Xl
2 4 1 0 0} x, 48 2%, +4X, + X, =48
4 2 0 1 0% |=[60] =4x +2x,+ X, =60
3 00 0 1)x, 42 3X, + Xg =42
X5
x=0

The degrees of freedom of the problem are
nN—-m=5-3=2
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Definitions
« /—/—/////']

b A basic matrix is a set of m linearly
Ay Xy T8 Xy ot Xy =0 independent columns of A.

A basic variable is a decision variable
..... associated to one of these columns.

A X, +a,X, +..+a X, =0, Asrank(A) = mitis always possible
to find, at least, a basic matrix

A basic solution is a solution of Ax= b that is obtained fixing the value
of the n-m non basic variables to zero and solving the equation
Ax = b for the m basic variables.

A basic feasible solution is a basic solution that verifies all constraints
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Example

w &~ DN
o N b
o O
o +— O
, O O

Basic
X>0 matrix

2. 0+4. 0+ X,
4. 0+2. 0+ X,

3. 0+ / X
Basic
variables

x
=

N

w

X X X X
SN

48
60
42

x
N =

X X X X
£ &

ol

Region +hx.=4
factible =\ |2t x=48

= ‘U — X4
= — 2N

Ax+2x%= 60\\

2%, +4X, + X, =438
= 4X, +2X,+ X, =60
3X, + Xg =42
0 Basic
0 solution
and also
=| 48 basic
60 feasible
42 solution
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Vertices = Basic feasible solutions
« 00000077

Ay X +a,X, +..+a, X, =b

1n“*n

A basic feasible solution X, verifies m
8y X + 85X, +. 485X, =D, equations Ax = b, so, it satisfies m
active constraints, as well as n-m
relations x; = 0. Hence, it satisfies n
— m + m = n constraints in active
form and consequently is a vertex

a. X +a X, +..+a X =b_

A vertex satisfies n independent
and active constraints. If X is
feasible, it must satisfy all
equations. There is only m
equality constraints, Ax = b,

hence, it must satisfy too other Vertices= basic feasible solutions

n-m, x>0 as equalities. So, x
corresponds to a feasible basic

solution. Cesar de Prada ISA-UVA



Degenerate Vertices

. glsnenerate A vertex x, or basic feasible
ve?tex solution, is non degenerate if it
satisfies exactly n active
Degenerate constraints.
- vertex If it satisfies more than n active
constraints it is called
X1 degenerate
X2
C Feasible set
v max 2x, +3X,
4X, +9X, =1
X1 X, 20, X,>0

S

Non degenerate vertices
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Redund

X,=12

Degenerate

Feasible vertex
region
= 1<
12
4X,+2X,=6

Redundant constraint: the
feasible region doesn’t
change Iif the constraint is
omitted

t constraints

max 6x, +4x,
under:

2X, +4x, <48
4X, +2X, <60
3X, <36

> N
X, 20 change
X, 20
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LP problem
-

Xo
X" If the solution is located in a vertex

Optimo and a vertex is a basic feasible
solution, one could think in a
solution method that would
evaluate J = ¢’x at each basic
feasible solution and would choose
X that best one, if it exist.

The maximum number of vertices corresponds to the different groups of
m columns that we can form using the n ones of A, that is:

n_ n! If n is big, this can be an enormous number: e.g.
m) m!i(n—m)! forn=100, m=50 there are 10%° combinations!
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The Simplex Algorithm (Dantzig
1947)

The Simplex algorithm is an intelligent way of travelling through the
vertices of the feasible region such that

VIt founds a vertex
v'Check if it is optimum
vIf not, it moves to another neighbouring vertex having a better value of J

v'It also detects the absence of solution due to a unfeasible set or an
unbounded cost function.

Hence, in a finite number of steps, the algorithm can found the optimum
It operates in two phases:
| Finds the initial vertex or detects that there is no solution

Il Finds the optimum, or detects that the problem is unbounded
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Phase | of the simplex algorithm
S

In its first step, the simplex algorithm transforms the original LP
problem into the following canonical format:

Xy T X T .+ a X, =0
X2 +32,m+1xm+1 +"'+52nxn - b2
Xm +am,m+lxm+1 +"'+émnxn — bm

where m variables (in the example the first m) appear only in an equation
and with coefficient one, and also b, >0

or concludes that there is no feasible solution
Cesar de Prada ISA-UVA



Transformation to canonical form
« 00000077

The conversion can be made choosing a base B. For simplicity, we will
assume that it corresponds to the first m variables. (It is always possible
to switch columns in order to place the selected variables in these
positions). Then, one can operate as:

Ax=b = [B Nx=b =B7*[B Nx=B™@ = [I B*’Nk=b

So that the system is in the canonical form format.

Alternatively, the Gauss-Jordan elimination can be used for the same
purpose. In this context, the operations performed with linear
combinations of the files are called pivot operations.

From this format, a right away solution is: (This point is discussed later on)

(b,,b,,....,b_,0,..,0) if b. >0 itisfeasibleinaddition
Cesar de Prada ISA-UVA



~ % \\
) \ 14
\
Reg_ic‘:n \ | 2x,+4x,=48
Example R
1 A
Xl
2 411 0 0} x, 48 2%, +4X, + X, =48
4 210 1 0| x;|=[60| =4x+2x,+ X, =60
3 0/0 0 1} x, 42 3X, + Xg =42
Basic Xs
X=>0 matrix
X, 0
2. 0+4. 0+x, — 48) X, 0 1I:3asi'cl:3|
4.0+2.0+ X, =600=|% |=|48| <o
3. 0+ / X; =42 X, 60
Basic X 42

ol

variables Cesar de Prada ISA-UVA



2044 0+x, =48] |« 0 | Solucion
b
404204 x, =60 =|x, |=|48] ot
3.0+ / X, =42 |3, | |60
Variables

Simplex, phase |l R

X, + 8 X T o+ 83X, = b An initial vertex is
_ _ b generated easily:
X2 +a2,m+1xm+1 +"'+a2an = -
..... baSiC XI :bl 20 i:1,2,...,m
- - _h nonbasic Xx.=0|j=m+1,...,n
Xm +am,m+1xm+1+"'+amnxn - bm J J
N J _/
e ~
Basic (or Non-basic (or
dependent) independent)

The set of basic variables is called a base xg
Xg = (X;:Xg1mre X )
As the non-basic variables are 0, if cg=(c,,C,,...,C,,) then:

J=Cg'Xp
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Adjacent Vertex

An active
constraint in X
fulfils the
constraints with =

vertex

vertex

Adjacent vertices differ just in one constraint
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. . L
Adjacent vertices ° X, X

2141
4120

3/0(0 @
Basic Xs

Xs | =

o — O
— O O

X>0 matrix

2.0+4.x,+0 =48
4,0+2. X,+ X, =60

3.0+ x, =42
Basic
variables

2X, +4X, + X, =48

= 4X, +2X,+ X, =60

48

60

42
X
X,

= | X3
X4
X

ol

3X, + X, =42

The active constraint
X, = 0 is changed by
0 X5 = 0 in order to

. generate an adjacent
12 | Basic :
. vertex. This means
feasible
=1 0 : that x5 moves out of
solution :
36 the basis and x,
comes in
42
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Adjacent vertex

An adjacent vertex differs from its neighbours in just one active constraint.

In order to obtain an adjacent vertex, the simplex method moves one
non-basic variable to the basis and swaps it with a basic variable.

The variables to be swapped are chosen so that the cost function
improves as much as possible

a,X, =b Assign the value zero to n-m

X =b variables and solve Ax=Db for the
others. Which are the best two
""" variables to swap?
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Adjacent vertex

X, + A Xy e F X F o+ 3 X = b, Assume that we
Increase the value
B of a non-basic
Xr + a‘r,m+1Xm+1 Tt a‘rsXs Tt aran — br e variable XS from O to
_____ 1,maintaining the
B B B . remaining ones in 0
Xm + am,m+1xm+1 +...t amsxs +..t+ a‘mnxn - bm)
X, +a, X, =D,
..... X, =b —a, i=1..,m
X, +a X, =b, tif X, =1= X, =1
..... X;=0 J=m+1l..,n J#I
X +a X = bm)
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Relative gain
S

. Of course, the change in x, should

X;=b—a, 1=1..,m be such that one basic variable
ifx.=1= X, =1 , becomes zero, making it non-basic
. . .| inthis way, but, for the moment,
xj:O J=m+1..,n J#1]

let’s keep the value x, =1

The change in the cost function J would be:
A = (Zci (BI _ éis) + Csj - Zcibi = Cs — Zciais = Cs — CBl Ps
i=1 i=1 i=1

If the relative gain (change of J per unit change in x;) of a non-basic variable
X IS > 0, then J will improve when X, is converted into a basic variable
because its value will change from O to a positive one.

Ps non-basic column of A Cesar de Prada ISA-UVA



Extremum conditions
« 00000077

If the relative gains of all non-basic variables are negative or zero, then all
adjacent vertex to the current one have values of J lower than the current
one and this vertex is a local minimum, but as the problem is convex
(linear) the local optimum is also a global one.

C,—Cz P, <0 s=m+1..,n
c,'—Cg'B'N<O

If a non-basic variable x, has a relative gain >0, then, J will improve if the
value of this variable is increased by converting it into a basic variable.

Which is the non-basic variable that should be selected? The one with
the highest relative gain.

How much should its value be increased? Which basic variable should be

removed from the basis?
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How much should its value be increased?
Which basic variable should be removed
from the basis? Rule of the lower ratio

If the value of a non-basic variable X, is changed, the value of the basic
variables changes to: .
Notice that X,

(ifa, <0 x,T =x1
- : . only can change
x,=b —ax, i=1..miif a, =0 x T =x, cte ﬂo%(ﬂoa J
ifa, >0 x. T =x positive value
The maximum change in x, that respects the Emin b, = b, i
constraint x; 2 0, for all basic variables is: a>°H,S _______ H rs

When x, is assigned the value b,/a,, the basic variable x, will became
0 and, hence, will be converted into a non-basic one, swapping roles

with x.. The change in J will be given by:

o (rj >0
a Cesar de Prada ISA-UVA

rs



Unbounded solutions
«_«_ 7

If the value of a non-basic variable X, is changed, the value of the basic
variables changes to:

(sia, <0 x, T =x1T
x. =b —a.x, i=1..misia, =0 x, T = x cte
sig, >0 x, T =x{

Notice that if all elements of the colum s verify:

a,<0 Vvi=1..,m

Then the value of x, can be increased as much as one wish without
any risk that any basic variable x; become negative. So, as J

increases when X, increases, there is no upper bound in J and the
LP problem has no solution.
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Degenerate solutions

If it happens that after computing a new basic solution, any of the basic
variables is zero, then the vertex (or the basic feasible solution) is called

degenerate.

They can appear in the initial vertex when a b, is zero, or when
computing a new vertex. In this case as

min { b } _ b, ~0 The increment in J will cs[fj =0

ais >0 H H be

IS rs

And no improvement will be achieved in this iteration. In theory, it may
happens that after several changes without improvements, one returns
to a previous visited vertex, creating a cycle and stopping the
convergence of the algorithm. Nevertheless, in practice, this can be

avoided in a well programmed algorithm.
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Summary

1 Formulate the problem in
canonical form, write the associated
table and choose a basis.

2 For every non-basic variable, [ ]
compute the relative gain and [
choose the variable with the highest
one. O If the relative gain is < 0, the
current vertex is optimum. If not,
select this variable x, to be moved
to the basis. If all a, are <0, then
there is no solution.

3 Compute the lowest of all ratios []
b/a, (a,c>0) in order to select which
basic variable is moved from the
basis.

]

4 Pivot on the element B of this file
and row in order to formulate again
the problem in canonical form and
repeat the process
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Example
-

Manufacture of silk and Standard canonical form

cotton

max 6x, + 4x, m)?xJ:6x1+4x2+Ox3+Ox4+Ox5:m?xJ:cx

under : X,

2X, +4x, <48 2 4 1 0 0)x, 48

4X, +2X, <60 4 2 0 1 0 x;|=|60

3X, <42 3 00 0 1)x, 42

X, 20 Xsg

X, >0 X=>0 Excel

Cesar de Prada ISA-UVA



Phase | of the simplex algorithm

We have seen that selecting m independent columns of A, it is always
possible to convert the LP problem to canonical form:

Ax=b = [B Nx=b =B7'B N)x=B' = |[I B'Nk=b

And find a basic solution:  (b,,b,,....,b_,0,...,0)

if all b, >0 A basic feasible

X
solution has been °
found and Phase Il can

But if some b, is <0 the previous basic s

solution is not feasible and an X1

alternative must be found Cesar de Prada ISA-UVA



Phase | of the simplex algorithm
S

If some b.< 0, then both sides of the corresponding equation can be
multiplied by -1, so that all b; will be positive. (but the solution will remain
unfeasible). Next the following associated LP problem can be formulated

and solved:
max — (L11....1)v If the original LP problem
X, has a feasible solution X,
- ~dvV then the associated LP will
[I I MLJ =P v>0, x>0 have a solution [ 0, X]

where [T Mx=p is I B*NJx=b after convertingall b, to positive #

Notice that the associated LP have always an initial basic feasible

solution [v,x]=(B,0). If the solution of the associated LP is [v",x]=(0,x%),
then x® is an initial basic feasible solution of the original LP. Otherwise,
there is no feasible solution to the original LP Cesar de Prada ISA-UVA



A small change

max 6x, +4x,

Original der -
N problem: under-
2X, +4x, <48
X, 714 4X, +2X, <60
ol 3X, <42
Feasible
: 2X,+4X,=48
region b X 20
X, 20
— ﬁ < X1 Assume now that the machine
1 number 3 must be processing

silk at least 12h. per week
4X,+2X,=60
Cesar de Prada ISA-UVA



A small change

max 6x, +4x,
under :

2X, +4x, <48
4X, +2X, <60

3X, <42
2X,+4X,=48
L 3x, >12

X714

!

Region <=
factible

= = 1 &=\ x
1

X, 20, x,20

3x, = 12 A%, +2X,=60
Cesar de Prada ISA-UVA



Initial basic feasible solution
«_«_ 7

max 6x, + 4x, max (6,4,0,0,0,0)'x
sujetoa: sujetoa:
2X, +4x, <48 X,
4x, + 2%, <60 2 4 1 0 0 0)x,| | 48]
3x, <42 2 01 0 0} x, 60
3x, >12 3 0001 0x,| |42
X, 20, x,20 -3 0 00 0 1)[x5| |[—12]

_X6_

X=>0

(0,0,48,60,42,-12) is not feasible, so, the phase | of the

simplex algorithm is needed
Cesar de Prada ISA-UVA



Example phase |
-

10002 4 1 0 0 O
A 01004 2 0 1 0 O
max (-1,-1,-1,-1,0,0,0,0,0,0)'
X,h X 00103 0 0 0 1 O
A>0 x>0 00013 0 0 0 0 -1
Provides an initial % -
vertex for: 2 4 1 0 0 0)x, 48
4 2 0 1 0 0] xg 60
max (6,4,0,0,0,0)'x =
X 3 00 0 1 0}x, 42
x=0 -3 0 00 0 1)\x| [-12]
_X6_

All positive

e
7\'2

7\‘3

L, | [48
X 60
X2 | 7| 42
| 12
X4

X5
| X6 _

Excel
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Mixtures (diet)
-

The following table provides prices and nutrient content of several foods:

Daily Milk | Eggs Meet Bread |Cheese

minimum (cup) | (unit) (100g) | (piece) |(1009)

75 8 7 20 2 7

1.2 0.3 0.03 0.01 0.01 0.25

1.2 0.1 1.5 3 0.6 0.1

3600 175 |75 150 75 100
Price € 0.3 0.1 0.8 0.1 0.6

As well as the minimum daily dose of each one. Which is the cheapest
menu that covers the minimum daily amount of each nutrient, assuming
that at least two pieces of bread must be included?

Cesar de Prada ISA-UVA



Mixtures
« /]

X; amount of each type of food (x,= cups of milk, x,=number of eggs,

X5= grams of meet/100, x, = pieces of bread, x:= grams of chease/100)
for the menu

n, minimum daily amount that must be eaten of every nutrient i
c; content of nutrient i in every unit of food |

p; price of a unit of food |

manprJ

Zc xX.>n, i=1...4

7]

X;20, x,22
Cesar de Prada ISA-UVA



Blending
S

Two types of kerosene A and B, and two types of car naphtha A and B, are
manufactured in a refinery by mixing alkylate, basic gasoline and cracked
gasoline. Its physical properties and daily production are given in the table:

Row PVR Octane Octane Production

Product number (0) | number m3/day
(250)

Alkylate 5 94 108 4000

Basic 4 74 86 4000

Gasoline

Cracked 8 84 94 2500

Gasoline

With or without 250 mg/m3

of tetraethyl lead (TEL%esar de Prada ISA-UVA




TEL: mg/m3 de tetraethyl lead

Blending
S

And the mixtures must have the following properties:

Product PVR TEL Octane Benefit
number €/ m3
Kerosene A | <7 0 > 80 100
Kerosene B | <7 250 > 91 110
Leaded 250 > 87 95
naphtha A
Unleaded 0 > 91 95
naphtha B

Decide which must be the daily production of each product and the

blending that provides the maximum benefit per day
Cesar de Prada ISA-UVA




Blending- Nomenclature
-

X,5 = M3 of alkylate spent daily in the manufacturing of kerosene A

X,z = M3 of alkylate with TEL spent daily in the manufacturing of kerosene B
X,s = M3 of alkylate spent daily in the manufacturing of unleaded naphtha A

X,p = M3 of alkylate with TEL spent daily in the manufacturing of leaded
naphtha B

Xpar Xpgr Xps: Xpp M3 Of basic gasoline spent.. ....
X.ar Xegr Xesy Xep M3 Of cracked gasoline spent...
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Blending - Aim
S

Find the blend that, satisfying the specifications of quality (in PVR and
octane index) and the availability of products, maximizes the daily benefit

maXx 100(X,, + X,n + X.a) +110(X 5 + X5 + Xg) +99(X 5 + Xps + Xeg) +95(Xp + Xpp + Xep)

The amount of each type of products used in the blend cannot be bigger
than its daily availability

Xaa + X + X + Xp <4000
Xpa + Xpg + X + Xpp < 4000
Xep T Xeg + X + Xp <2500
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Blending - PVR
S

The kerosene of each type must comply with the minimum specifications

of PVR:
X X X
aA 5+ bA 4 + cA 8<7
XaA + XbA + XCA XaA + XbA + XCA XaA + XbA + XCA
X X X
aB 5+ bB 4 + cA 8<7

XaB + XbB + XcB XaB + XbB + XcB XaB + XbB + XcB
Which can be written in linear form:

OX 0 +4X 5 +8Xp S T(X o + Xop + Xn)
O5X,5 +4X5 +8X.4 < 7(X 5 + Xpg + Xeg)
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Blending — Octane number
-

The kerosene and naphtha of each type must comply with the minimum
specifications of octane number and TEL content:

X X X
aA 94 + bA 74 + cA

X

84 >80

X X
aB 108 + bB 86 + cB 94 >91
XaB + XbB + XcB XaB + XbB + XcB XaB + XbB + XcB

XaS

X X
94 + b 74+ S
XaS + XbS + XCS XaS + XbS + XcS XaS + XbS + XcS

XaP

84 >91

X X
108 + bP 86 + cP
XaP + XbP + XcP XaP + XbP + XcP XaP + XbP + XcP

94 > 87

Which can be written also in linear form
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B I en d | n g The final problem can be formulated as a LP one

max 100( X, + X, + X.a) +110(X 5 + X5 + Xg) +95(X, s + Xis + Xog) +95(Xp + Xpp + Xep )

Xaa + X + X s + Xp <4000 x>0
Xpp + Xpg + Xps + Xpp <4000
Xen T Xeg + X + Xp <2500
DX p + 44X 0 +8X 0 S T(Xop + Xpp + Xen)

5X,5 +4Xs +8X g < 7(Xg + X5 + Xeg)

94X, + 74X, , +84X_, = 80(X,, + Xop + X_)
108X, +86X,5 +94X 5 > 91(X g + X5 + X5 )
94X  + 74Xy +84X s > 91(X g + Xys + X5

>
108Xp +86X,p +94Xp 2 87(Xp + Xyp + Xep) Cesar de Prada ISA-UVA



Blending
S

The total amount consumed of each row product will be:
Xa = XaA + XaB + XaS + XaP
Xp = Xpa T Xpg T Xps + Xpp
X, = Xea + Xeg + Xs + Xep
TEL = 250(X_5 + Xy + Xz + Xop + Xp + Xp) MQ

And the total amount produced of every final product:
Xg = Xag T Xpg T Xeg
Xg = Xag T Xpg T Xeg

Xp = Xgp T Xpp T Xp
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Complexity
S

e The relation between the time spent by an algorithm
In finding a solution and the size (n) of the decision
vector x Is called complexity

e The number of vertices that the simplex algorithm
must visit depends on the initial vertex. In the worst
case in may be 2"-1, so the algorithm has an
exponential complexity O(2"-1)

e A desirable property for an algorithm to be useful is
having polynomial complexity
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Other LP algorithms
S

e There are other methods for solving LP problems:

- Revised simplex. It has exponential complexity but reduces
the number of computations on the columns.

- Khachiyan Algorithm. It has polynomial complexity O(n“L)
where L depends on the required precision.

- Karmarkar Algorithm. It is an interior point method of
polynomial complexity O(n3SL). It is an efficient method for
large scale problems. It does not travel through vertices, but
It generate a sequence of points starting from an feasible
point in the interior of the feasible set.
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Interior point

methods

vertex

Xy

Breakthrough in Problem Solving

By JAMES GLEICK

A 2E-year-pld mathematickan ar A T.&T.
Bell Laboratories hos made & swrli
theoretical breakth 1 the solving
systems of equations that often grow oo
vast and complex for the most powerful
COMpuULErs.

The discovery, which is to be formally
published next month, is alresdy cir-
culating rapidly through the mathematical
world. It also set off a deluge of
inguiries from brokerages howses, oil com-
panies and airlines, industries with millions
of dollars at stake in problems known as
linear programeming.

Faster Solutions Seen

These problems are flendishly com-
plicated gysiems, ofien with thousands of
varigbles. They arise in a variery of com-
mareikl and government applications, rang-
ing from allocating time on & communica-
toas satellite to routing millions of
telephane calls over long distances, or
whenever & limited, cxpensive resource
must be spresd mosl efficientdly among
competing users. And imvestment com-
panies use them in crean lios with
the best mix of socks m

The Bell Labs mathematician, Dr,
T;:E:L?m K.B:mthar.lh}:: devised a

¥ neEw ure iy speed the
routine hndrnu;F such problems by
businesses and ment agencies and
also make it possible 1w mekle problems
that are now far out of reach,

“This s & path-breaking result” said Dr,
Renald L, Graham, director of
mathematical sciences for Bell Labs
Murray Hill, N.1

“Science has its moments of great pro-
press, and this may well be one of them ™

Because problems in linsar program-
ming can heve billions or more possible
answers, even high-spesd computers can-
not check every one. 5o co bers miwst
uge a special procedure, qnmrimm. o
examiing & few answers as possible
finding the best one — typically the one
that minimizes cost or maximizes
efficiency. i

A procedune devised in 1947, the simplax
method, s pow used for such problems,

Continoed on Page A19, Column 1

THE NEW YORK TIMES, November 19, 1984
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Interior points methods
-

e Karmarkar algorithm (1984) is the best known

e For simplicity, the Dikin method, which can be applied to LP
problems in standard form will be described briefly:

max J =c'X
Ax=Db
x>0

Starting from a point in the
interior of the feasible set, x /
> 0, the point is moved to 7
other places that respect

the constraints and improve

the cost J
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max J =C'X
X

Ax=D
Interior point method (Dikin) **°
...

Any move respecting the constraints
must fulfil:

AxX+Ax)=b = AAx=0

At any feasible x, the vector c points to
an improvement direction of J, but in
order to guarantee that Ax fulfils the
constraints, the move should follow a
direction perpendicular to A given by
its orthogonal projection

[T, =1-AT(AAD)'A
AAX = All -AT(AAT) Al =
= Ac-AAT(AAT)*Ac=0

Moving X in the direction:

Ax =|1-AT(AAT)Alc

The equality constraints are
satisfied
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mfli:c'x
Ax =D
Interior point method (Dikin) *=°

Moving X in the direction:
Ax =|I-AT(AAT)Alc

J is increased while the constraints
are respected.

In order to assure that x 2 0 it is
Important also to choose an
adequate step lenght ¢

Usually, a previous scaling facilitate
the selection of ¢ based on the most
negative component of Ax

X1 = X, + CAX

If all components of Ax are
positive, then the problem is
unbounded and there is no

maX|mumCesar de Prada ISA-UVA



Dual Problem

There exists a dual LP problem associated to every primal LP one

There is a relation
between both
problems that can
be used to analyse
the solutions and
think in alternative
solution paths

(1xn)(nx1) (1xm)(mx1)
maxc'x mzin b'z
A:< <b A'z>c
x>0 (nx1) z>0 (mx1)
(mxn)(nx1) (nxm)(mx1)

The dual of the dual is the original LP problem
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Example
-

Primal

max6x, +4x,
X

under:

2X, +4X, <48
4x, +2X, <60
3X, <42

X, 20

X, 20

Dual
min48z, +60z, + 42z,

under:

22, +4z2,+32, 26

4z, +22,+0z, >4
2,20, 2,20, z,20
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Dual problem of the LP standard one

Primal .
. maxc' X
maxc' X X
A&—b Ax<b
R - Ax=b ™
X >0
X>0
Dual ~
1A
min[b’ -b' }:mmbKX—w
Y IRY, Y

Z=A—V

>c = A'(A-v)2>cC

maxc'Xx maxc'Xx
X X

AX<Db A b

— X <
—AxX<-Db —A -b
x>0 x>0

Dual

minb'z
Y4

A'z>cC

Z unconstraint
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Example
-

Primal Dual

max J =6X, +4X, +0x, +0x, +0x; min 48z, + 60z, + 42z,
X, 2 4 3 6 |

2 4 1 0 0} x, 48 4 2 0fz]| |4

4 2 0 1 0| x;|=|60 1 0 0|z |=|0

3 00 0 1)x, 42 0 1 0|z;] |O
X 0 01 0]

X220
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Duality Lemma
S

If x and z are two feasible solutions of the primal and dual LP problems

respectively, then:
c'xX<b'z

So, any solution of the primal is a lower bound of any solution of the
dual

In fact, if x and z are feasible points: Ax=b, x>0, Az2>c
Az>c, = XAz>xc but XA =Db',= bz>xCc
So, if one of the problems is unbounded, the other has no feasible

solution

The result can be applied also when the LP problem is formulated with

inequalities
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Duality Lemma
S

According to the duality lemma, if x and y are two feasible solutions of the
primal and dual LP problems respectively, then:

c'xX<b'z

Hence, if X, and z, are two feasible points of the primal and dual LP
problems respectively and they verify c’x, = b’z,, then both are optimal
for these problems because they reach an upper /lower bound

The opposite is also true and jointly they form the duality theorem
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The duality Theorem
S

If the primal LP has an optimal solution x*, then the dual has also a solution
and they verify: ¢’x" = b’z

Primal maxc'x Dual minb'z
X Z
AX=Db A'z>cC
x>0

Every optimal solution of the primal LP must be a basic feasible solution
verifying: (the columns have been reordered so that B is a basis)

AX'=b = [B Nk'=b =B7*[B N)x'=B™ = [I B'NKk'=B™

'XB
-XN

} cy —CsB'N<0" <«— Extremum condition
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Duality Theorem
-

c;'B'N=>c,' defining z’=c,'B* = z'N>c.'
z is a basic feasible solution of the dual problem. In fact:
2’A=72'[B N]=c;'B[B N]=[c;" cz'B'N|>[c," ¢ ]=¢
So it verifies Z’A > ¢’ and it is feasible in the dual. In addition:
Z'b=c,'B'b=c,'x,

So, because of the duality lemma, z is optimum for the dual as it reaches
an upper bound, because (B-1b, 0) is a solution of the primal

The result can be applied also when the LP problem is formulated
with inequalities
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Solution of the dual problem
-

If the optimal solution of the primal LP problem is known, then it is
possible to compute the solution of the dual (and viceversa)

In order to compute z*, one must use the expression Ax = b where the
columns have been reordered so that the m first ones correspond to the
base B of the optimum.

The optimal solution z* of the dual can be obtained from:
z'=c,B™

Which can always be computed as B is a basis
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Sensitivities of the optimum
S

maxJ =c'x How does the optimal cost J° change if the constraint vector
X b changes?

Ax=b 2 ocx bz .

x20 b b b

The solution z” of the dual LP problem provides the sensitivity of the
optimal cost of the primal with respect to the constraint vector b

The values z* are called sometimes shadow prices

Obviously, it also happens:

)" oc'x .
OC OC

Cesar de Prada ISA-UVA



Example: How much changes J™?

Primal

max6x, +4x,
X

under:

2X, +4X, <48
4x, +2X, <60
3X, <42

X, 20

X, 20

How much changes the optimal cost 96 if
machine 1 can work for 50 h. per week?

oJ” x

SEE— Zl

ob,
In order to answer this question the solution of
the dual problem must be computed, either

directly or, in a more efficient way, from the
base B of the optimal solution of the primal LP

z'=c,B™
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Example: How much changes J™?

max 6X, +4Xx, max J = 6x; +4x, + 0x; +0x, + 0x,
2X, +4x, < 48) Xy
4%, +2X, <60 ¢ Excel 2 4 0 0 1)x, 48
3x, < 42 4 2 0 1 0|(Xz)l=]60]| x>0
X >0 30100x4a42
z'=c,B™ B (x5)
2 4 0"
z, z, z,]=[6 4 0|4 2 0| =[1/3 4/3 O]
3 0 1 "

(50—48)(1 =2z, =2/3
ob,
Cesar de Prada ISA-UVA
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Transport problems
S

A firm has factories in Galicia, La Rioja and Murcia, and warehouses in
Seville, Madrid, Barcelona, Santander and Bilbao. The cost of sending a
unity of a product from a factory to a warehouse is given in the adjoint
table, as well as the stocks in every factory and the demands from the

warehouses:
Sevilla Madrid Barcelona Santander Bilbao

Demandas por almacén--> 180 80 200 160 220
Plantas. Existencias Costos de envio de la planta "x" al almacén "y" (en la interseccio

Galicia 310 10 8 6 5 4

La Rioja 260 6 5 4 3 6
Murcia 280 3 4 5 5 9

Which is the amount of product that must be sent from each factory to
every warehouse in order to minimize the transport costs while satisfying

f)
the demand of each warehouse~ Cesar de Prada ISA-UVA



Transport problems
S

| set of factories j set of warehouses

X; amount of product sent from factory | to warehouse |

c; cost of sending a unity of product from factory i to warehouse |
e; stock of product in factory i

d; demand of warehouse |
min > c;X;
X _—
1)
i j

i=123  j=12,345

Excel
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Cerrar |
" Maximo & Minimo ¢ Valores de: ||:|
EX C e I —Cambiando fas celdas
I5cs8:56510 X Estimer |
Opciones... |

Parametros de Solver x|

Celda objetivo:

Valor de la celda objetivo:

| Regolver |

-Sujetas a3 las siguientes restricciones:

$B$8:5B510 <= $B$16:5B518
$C$12:5G512 >= $C$14:5G514
$C$8:5G510 == 0

;I Agreqgar... |

Camnbiar... |

Restablecer todo |

[

Elimminar |

Ayuda

", "

Cantidad a enviar de la planta "x" al almacen "y’ (en la interseccion):

Plantas Total Sevilla Madrid  Barcelona Santander Bilbao
Galicia 300 0 0 0 80 220
La Rioja 260 0 0 180 80 0
Murcia 280 180 80 20 0 0
TOTAL: I T80 80 200 T60 220)
Demandas gor almacén-->§ 180 80 200 160 2204
Plantas. Existencias Costos de envio de la planta "x" al almacén "y" (en la interseccion).
Galicia 310 10 8 6 5 4
La Rioja 260 6 5 4 3 6
Murcia 280 3 4 5 5 9
Envio. I 3 200 5 I 540 $ 320 $ 820 $ 640 $ 880 $

Opciones de Solver

X|

Tiempo: segundos | Aceptar
Iteraciones: 100

Precision: |IZI.IIIIIIIIIIZIIZI1 Cargar modelo...
Tolerancia: |5 O

Guardar modelo..

Precision: Refers to the error in the constraints
Convergence: Refers to the error in the cost

Tolerance: Refers to the error in the cost (MILP)

Convergencia: |IZI.IIIIIIIIIl

[+ Adoptar modelo lineal [~ Usar escals automatica

x

|

Cancelar |
I

|

I

Ayuda

Estimacion—
& Lineal
™ Cuadrdtica

[~ Asumir no negativos

[~ Mostrar resuttado de iteraciones

Derivadas Hallar por
#® Progresivas ® MNewton
i” Centrales ™ Gradiente conjugado

cvtodl UT rada oAU VA




Sensibility of the constraints
S

Constraints Admissible change in the

constraints before the Decrease
Restricciones shadow price changes \
Valor Sombra Restriccion Aumento
Celda Nombre Igual precio lado derecho permisible permisible

$B3$8 Galicia Total 300 0 310 1E+30 10
$B$9 La Rioja Total 260 -2 260 80 10
$B$10 Murcia Total 280 -1 280 80 10
$CH12 TOTAL: --- 180 4 180 10 80
$D$12 TOTAL: --- 80 5 80 10 80
$ES$12 TOTAL: --- 200 6 200 10 80
$F$12 TOTAL: --- 160 5 160 10 80
$G$12 TOTAL: --- 220 4 220 10 220
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Relative gains
Optimal (min 20)
solution

Sensibility (cost function)

decrease
) Valor / Gradiente Coeficiente Aumento w
Celda Nombre & Igual reducido objetivo permisible permisible
$C$8 Galicia Sevilla 0 6 10 1E+30 6
$D$8 Galicia Madrid 0 3 8 1E+30 3
$E$8 Galicia Barcelona 0 ( 0 ><\€‘\1E+30 o Possible
$F$8 Galicia Santander 80 0 5 0 T multi p| icity
$G$8 Galicia Bilbao 220 0 4 4 4 of the
$CH9 La Rioja Sevilla 0 4 6 1E+30 4 0pt| mal
$D3$9 La Rioja Madrid 0 2 5 1E+30 2 SOIUtion
$ES9 La Rioja Barcelona 180 0 4 0 1
$F$9 La Rioja Santander 80 0 3 1 0
$G3$9 La Rioja Bilbao 0 4 6 1E+30 4
$C$10 Murcia Sevilla 180 0 3 4 4
$D$10 Murcia Madrid 80 0 4 2 5
$ES10 Murcia Barcelona 20 0 5 1 2
$F$10 Murcia Santander 0 1 5 1E+30 1
$G$10 Murcia Bilbao 0 6 9 1E+30 6

Cesar de Prada ISA-UVA



Directed Graphs

Flows in one or
both ways
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Network flows problems

5o @ @20

R R

A chemical company has several plants connected by pipelines whose
maximum capacity in m3/min, direction and architecture can be seen in the
figure, besides the cost of sending a unit flow (in red). It wishes to send a
flow of 9 m3/min from plant number 1 to plant number 6. Which is the best
route in order to minimize the transport costs? Assume that no
accumulation or generation of product takes place in the intermediate

plants.
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Flow In networks

}@ 4,5

2,1
ol x
@@

_ N
min ZC”XU— X; amount sent from node i to node j

. e
6 6 _ 6 6
D Xpe=DXq Vizle > x;=9 > Xe=9 U capacity
k=1 k=1 j=1 i=1 t

ip - . C COS

0<x; <U, X; =0 If 1and jare not connected
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Flow In networks GAMS
«a  /////]

SET

n nodos /nodl,nod2,nod3,nod4,nod5, nod6/

I(n) nodos de salida /nodl1,nod2,nod3,nod4,nod5/
j(n) nodos de llegada /nod2,nod3,nod4,nod5,nod6/
k(n) nodos intermedios /nod2,nod3,nod4,nod5/;
alias (n,nn)

Table c(n,nn) costes de envio
nodl nod2 nod3 nod4 nod5 nod6

nodl O ©6 9 0 O O
nod2 O O 3 5 1 O
nod3 O O 0 2 4 0
nod4 O O 0 0 O ©6
nod>5 O O 0 1 0O 5
nod6 O O 0 0 0 O
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GAMS
<

Table b(n,nn) capacidad de envio
nodl nod2 nod3 nod4 nod5 nod6

nodl 0O 5 8 0 0 0
nod2 0O O 3 4 2 0
nod3 0O O 0 3 6 0
nod4 0O O 0 0 0 9
nod>5 O O 0 5 0 8
nod6 0O O 0 0 0 0;
Variables

X(n,nn) cantidades de envio

Z,

Positive Variables x(n,nn);
x.up(n,nn) = b(n,nn);
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GAMS
<

Equations

obj  defines the cost function

constl defines the constraint on the first output node
const2 defines the constraint on the last arrival node
const3(n) balance in one node;

obj.. z =e= sum((i,)), c(i,j)*x(i,)));
constl.. sum(j, X('nodl',))) =e=9;
const2.. sum(i, x(i, 'nod6")) =e= 9;
const3(k).. sum(i, x(i,k))=e= sum(j, x(k,)));

Model redes /all/;
Solve redes using Ip minimizing z;
Display x.I;
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Results GAMS

EXECUTION TIME = 0.125 SECONDS 4 Mb WEX236-236 Apr 6, 2011
GAMS Rev 236 WEX-WEI 23.6.5 x86_64/MS Windows 10/25/11 03:12:45 Page 5
General Algebraic Modeling System

Solution Report  SOLVE redes Using LP From line 57

SOLVE SUMMARY

MODEL redes OBJECTIVE z
TYPE LP DIRECTION MINIMIZE
SOLVER CPLEX FROM LINE 57

**** SOLVER STATUS 1 Normal Completion
*xxx MODEL STATUS 1 Optimal
*** OBJECTIVE VALUE 144.0000

RESOURCE USAGE, LIMIT ~ 0.149 (sg. CPU) 1000.000
ITERATION COUNT, LIMIT 2 2000000000 Cesar de Prada ISA-UVA



Results GAMS

---- 58 VARIABLE x.L cantidades de envio
nod?2 nod3 nod4 nod5 nod6
nodl 5.000 4.000

nod2 3.000 2.000

nod3 3.000 1.000

nod4 6.000
nod5 3.000
---- VAR Z -INF 144.000 +INF

LOWER LEVEL UPPER MARGINAL

- EQU obj . . . 1.000
—-EQUconstl  9.000 9.000  9.000 9.000
—-EQUconst2  9.000 9.000  9.000 9.000

------ Cesar de Prada ISA-UVA



Results GAMS

---- VAR x cantidades de envio

LOWER LEVEL UPPER MARGINAL

nodl.nod?2 . 5.000 5.000 -1.000
nodl.nod3 . 4.000 8.000 .
nodl.nod4 . . . -12.000
nodl.nod5 . . . -13.000
nodl.nod6 . . . -18.000
nod2.nod3 . . 3.000 1.000
nod2.nod4 . 3.000 4.000 .
nod2.nod5 . 2.000 2.000 -5.000
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Flow In hetworks, solution

s @

Optimal Cost 144

— @
o <l e

@

rT)l(iﬂ ZCU—XU— X; amount sent from node i to node j
N
6 6 6 6
ink = Zxki Vi#16 lej =9 ine =9 U capacity
k=1 k=1 j=1 i=1
. _ C cost
0<x; <U, X; =0 If 1and jare not connected
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Heat exchanger network synthesis
S

Let’s assume that a network is optimal if it has the following
characteristics:

1. Minimum utility cost
2. Minimum number of matches (units)

3. Minimum investment cost (configuration and sizes)
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Sequential synthesis of a heat exchanger
network: 1 Minimum utility cost

Which is the minimum utility cost in the heat exchanger

problem ?:
Fe,(kWiPC)  To(C)  T,u(C)
H1 1 400 120
H2 2 340 120
Cl 1.5 160 400
C2 1.3 100 250
Steam: 500°C Cold water: 20-30°C Temp. difference = 20°C
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Sequential synthesis of a heat
exchanger network

Heat content

Temperature
intervals H1 H2 C1 o
420 400 (14
int 1
H1 400 380 30
int 2
H2 340 320 60 90
int 3 . 250
180 160 160 320 240 117
int 4
C2 280 440 360 195
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tility requirement in the heat
exchanger network using LP

Q, (Steam)
120 l W1 g Ct
1
400 l R, |380
280 ! 60 ! %
—»- 2
320
340 R 240 !
3 117 Co 195
180 l R, | 160
J ) 78
120 l 100 Model of Papoulias and Grossmann
Q, {Cooling Water)
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Utility requirement in the heat
exchanger network using LP

Linear programming problem

SOLUTION

min Z =Q, +Q,,
s.a.

R, —Q, =-30
R, —R, =-30

R, —R, =123
Q, —R; =102

Q.. Q, R R,,R; =20

R, = 0 there is a pinch in the temperature interval 340°-320°C

Cesar de Prada ISA-UVA



Software
« /—/—/////']

e There are two main families of LP software :

- Solvers : routines that implement algorithms and can be called from
another software environment or language as dlI's and provide the
LP optimum (CPLEX, LINDO, OSL, Matlab, NAG,...)

- Modelling systems: Software environments that facilitate the
description, solution, analysis and management of the LP problem.
They allow to formulate the problem in a certain language (CPLEX,
GAMS, XPRESS-MP, AIMMS, GUROBI,...) or structure (Excel).
They call different solvers for finding the optimum.

e The size of a problem very often is expressed as the number of
non-zero elements of the A matrix (sparsity) A LP problem with
less that 1000 non-zero elements is considered a small problem,
and one with more than 50000 a big one. Modern solvers can
solve this problems in short times, from 1 second to one hour.

Cesar de Prada ISA-UVA
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