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Hybrid problems

>

Many decision problems, besides variables that can be
represented by real numbers, involve other decisions of
a discrete nature that can be represented naturally by
Integer or binary variables.

On other occasions, the formulation of the problem
Involves not only quantitative models but rules or
conditions that are better described by logical
expressions.

The optimization problems that deal with these types of
hybrid systems that involve real and integer variables
are called mixed integer programming (MIP).

If all the decision variables are integers, then the
problem is classified as one of integer optimization
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Example: Gang of burglars
-

Several burglars at work are in a store where there are N distinct objects.
Each object | has a weight p; and a value v;. They have a van that can carry
a maximum load P. Which objects should be selected by the burglars in
order to maximize the benefit of the robbery?

The decision to be made on each object is to select it or not. A binary
variables y; can be used for this purpose

N N
m;’:lx Zijj under Zyjpi <P ILP problem
= = integer linear
_ |0 object J has not been selected programming
Yi= 1 object j has been selected
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Modelling logic with binary variables

Select one alternative and only one

N
ZYi =1
i—1

Select no more that one alternative

N

Z y; <1

=1

Select at least one alternative

N

Z y, >1

=1

Select alternative j if alternative I has been selected
Yi =Y,
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Example: Salesman problem
-

A salesman must travel from his town to N others going back home
without staying twice in any of them. He knows the distance between
any two towns. Which is the best route in order to travel through a
minimum distance?

The decision to be made is to travel from town i to ‘

town j or not. We can associate a binary variable y; . j

to this decision for each couple of towns and _ C./, ‘ ‘
: |

denote as c; the distance between them Vi

N R 0 the salesman does not travel from town i to j
mym chiij Yi =

i 1 the salesman travelsfrom town i to j

N
Zyij =1 j=1,..,N he mustarrive once and only once to town |
i=1

N
Zyij =1 1=1,..,N hemustdepartonceand only once from town i
=1 Prof. Cesar de Prada ISA-UVA



Assigning tasks

In a workshop n people able to develop n tasks with different
performances are working. The time required by each person to
develop a given task is known. How the different tasks should be
assigned to each person in order to minimize the time required to
perform the n tasks?

Variables

| people

| tasks

t; time required by person i to finish task |

y; binary variable, is 1 if the person i is assigned task |

Prof. Cesar de Prada ISA-UVA



Assigning tasks

min 22,

i=1 j=1

sujeto a

Zyij =1 J
i=1

dy;=1 i
j=1

y; binary

1,...

1,...

Total time required to complete
the n tasks

Each person must have a task
assigned and only one

Each task have to be assigned to
one person and only to one
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Types of mixed-integer problems
S

(min Cly (min C|X_|_dly
y X’y
ILP Integer _
; Ay =b _ 4 AX=D MILP Mixed-Integer
Yy e Z Iﬁlpoeg,?;mming Ey —e Linear Programming
k \O < Xe Rn, y e /

Slack variables can be
h —0 MINLP Mixed- used to transform
(x,y) - Integer Non-Linear problems with equalities
Programming into inequalities and vice
<
g(x,y) <0 versa, or min problems
Into max ones

‘min J(X,Yy)
X,y

xeR", yeZ
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Solution methods

» One possible approach consists of relaxing the integer variables into real

ones, solving the corresponding NLP problem and then approximating the
solution to the closest integer, usually leads to wrong solutions, except
perhaps when a high number of values are admissible for each integer
variable.

Another method is to enumerate all possible combinations of integer
variables, solving each of the associated NLP problems that results when
the integer variables are given a fixed value and then choose the
combination that provides a better cost function. Nevertheless, this is not
a practical approach as the number of combinations grows exponentlally
with the number of integer variables.

The most popular solution method is based on an intelligent selection of
the integer combinations known as Branch and Bound (B&B)

There are many other approaches, most of them using a succession of
two phases; the so called Primary and Master ones. These phases
provide upper and lower bounds that narrow the gap progressively.
Examples: Outer Approximation (OA), Generalised Benders
Decomposition (GBD)
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Branch and Bound (B&B)
7

This method is based on an intelligent search of the optimum
combining the choice of integer combinations with relaxations
and the generation of lower and upper bounds of the cost
function that leads to the solution.

It uses three main ideas:

v Relaxation, that covert integer into real variables and allows
to compute bounds on the cost function.

v" Branching, that generate alternatives of combinations of
Integer variables in the decision tree.

v Fathoming, examining the bounds allows to eliminate groups
of integer combinations improving the search in this way.
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Relaxation

A relaxation of an integer variable in a MILP or MINLP
problem consists of allowing it to take any real value between
its maximum and minimum range. For instance, a binary
variable could take values within the interval 0 <y; <1. So, in
the relaxed problem, all variables, x and y, are real ones and
the corresponding problem is LP or NLP.

Original problem domain

Relaxed problem domain

Consequently, as the search space is widening, the solution of the
relaxed problem is a lower bound (upper bound if the problem is a
maximization one) of the original MILP or MINLP. The relaxation is

made with the purpose of obtaining such a bound.
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Branch and Bound (B&B) algorithm

Example ILP (Himmelblau)
Max J=86y,+4y,+40y;,
under

714y, +76y,+42y, <875
67y, +27y,+53Yy;<875
yl,y2,y3 0,1

The relaxed problemis a LP
one and its solution provides
an upper bound Jr* of J*:
J¥*<129.1

1
Relaxation
-0 <y, <1
0<y,<1
O0<y;<1 LP
y*=(1, 0.776, 1)
J*=129.1

yzzf/ 2 Branching \ y=1

Then, the two possible
integer options for y, (the
only remaining real number
in the solution) are examined
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Branch and Bound (B&B) algorithm

Max J=86y,+4y,+40y,
under

14y, +76y,+42y, <875
67y, +27y,+53y;<875

NO‘?',‘?/’ -O <y, <1

o<y, <1 |1 |
0<y,<1 Relaxation

LP | y*=(1, 0.776, 1)
J*=129.1

yl,y2,y3 €0,1 B 2 Branching
_ y,= 0 y,=1
3 Relaxation

=P -0£y1s1

Current best y, =0

feasible solution 0<y,<1
(incumbent):— [ y*=(1, 0, 1)
Lower bound of J*_{ J*=126.0

4 Fathoming

No more branching is possible at
node 2. The B&B finish if the gap
between the upper and lower bounds
Is less then a certain desired

accuracy
Cota,,, —cota

inf

<tol

1+|cota,,
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1 e 129.1

1 J*
0< <1
Relaxation 0< 32 <1 -00 Upper

f
B&'( B LP y*=(1, 0.776, 1) / glcl)und or
J*=129.1 « .

_ _ bellow
y>=0 2 Branching \yzz 1

129.1 128.11
7+ -Ogy_lél -OSylﬁl J*
126.0 Y2 = Relaxationg ~ Ya=1 126.0
O<y;<1 0<y;<1
Candidate » y*=(1,0, 1) *=(0.978,1, 1)
S o y*=(b.970,L, L) | ypper bound
solution. J*=126.0 J*=128.11« 1 .
-0 r - in this branch,
Incumbent. No Eathomi Y1 and. as 128.1
more branching  FANOMN9 - —francning W=t F300 N
y .pOSS'ble n If the gap in node 3 is higher than the  also the new
this node. The : :
3 of the desired accuracy, new branching upper bound
: : should be made. Otherwise, the B&B of the
candidate is a . : )
finish and the incumbent is the problem
lower bound for :
optimum

all branches.
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B&B

-OSylgl

1 0<y,<1
Relaxation 0<y,<1

LP | y*=(1, 0.776, 1)

G

129.1
J*

¥2=0 " 2 Branching \yzz 1

129.1 128.11
J* -OSylﬁl -OSy1£1 J*
126.0 Y, =0 Relaxations ~ Y2=1 126.0
O<y;<1 0<y,<1
Incumbent. No ——» y*=(1, 0, 1) y*=(0.978,1,1) |  Upper
more branching is J;*=126.0 J*=128.11 |  bound in
possible in this y1=0 :

node.

. this
Fath0m|ng mhlng \y‘lz 1 branch’

Each feasible integer solution provides
a lower bound of the problem

The values of the bounds can be
used to fathom branches without
the need of computing its values

Each branching
provides new upper
bounds in the branch
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129.1

Relaxation
LP

yz:AVZ Branching \Yf 1

Relaxation

129.1
J*
126.0

Incumbent

- y;=0
integer _

ible solution, /mmng y,=1
s the

ciated cost is

" than the Relaxation

r bound, it
be discarded
the node

No more branching is
allowed in this node

128.11
J*
126.0

med Fathoming Prof. Cesar de Prada ISA-UVA




129.1

Fathoming

Relaxation

129.1

LP

VZZVZ Branching y=1

J*
126.0 Relaxation
Incumbent
y;=0

128.11
J*
126.0

Mhing y;=1

The value of J*, is
lower of the lower

bound of 126. Any elaxation
branching from here
will provide a lower athoming

value a J and the node

can be fathomed Prof. Cesar de Prada ISA-UVA



129.1

Relaxation

B&B P

/2 Branching y2= !

129.1 128.11
J* J*
126.0 126.0
Incumbent —
y;=0
Mhmg
incumbent of node
2 is the optimal fathoming

As no more
fathoming solution Prof. Cesar de Prada ISA-UVA
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Integer and binary variables

Any integer variable z taking values between 0 and n, can be substituted
by a set of binary variables, that is variables that only take O or 1 values:

Z=y, +2Y,+3y;+ ... +ny,
1>y, +y, +ys+ ... +y,

y={0, 1}

Also z=2y, +2%2y,+.....+ 2Ky, does the same with less integer
variables

This can represent integers up to 2k*1-1

Then, mixed integer optimization problem can always be formulated in
terms of binary variables
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Example: Paint factory
-

A paint manufacturing facility has three production units with
capacities given in the table bellow. The costs associated to the
start up of the unit and to producing one Kg of paint are also given
there. One production unit can be started either in the morning or in
the afternoon, but, once started, must remain working at least for
half a day (one period: morning or afternoon)

Unit Start up cost € | Cost per Kg of | Capacity,
paint produced € | Kg/period

2800 S 1900
2000 3 1700
1900 8 2900

Prof. Cesar de Prada ISA-UVA



Paint factory

If one unit was started in the morning and continues operating in
the afternoon, obviously, only generates starting up costs in the
morning. All units are switched off at night, and the planning of the
day operation is made daily in the morning according to the
existing demand.

Assume that a certain day the factory must deliver 2500 kg of paint
iIn the morning and 3500 kg in the afternoon. Which units should
be used and when in order to reduce the cost as much as

possible?

How much would change the cost if the demand in the afternoon
were of 3600Kg?

Prof. Cesar de Prada ISA-UVA



Paint factory

Variables:
| unit number (1, 2, 3)
] working period: 1 morning 2 afternoon

y; binary variable: equal to 1 if the unit i works
in the period |

c, start up costs of unit i
p; production costs of a Kg of paint in unit |

w; production of unit i in a period (= capacity)

D; paint demand in the period |
z, auxiliary binary variable , 1 if y;, ory,, are 1
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Paint factory

m|n C.Z, + P;W (Vi + VY, Total cost
Yij 12 Z pl I(yll y|2) per day

Variable z; is 1 if unit i has been started up in the
morning or in the afternoon

Zwiyij > D, j=12
=1

Z; 2 Y, 1=123 =12

Other possible logic constraint: If we assume Z y, <1
that in the morning no more than a unit can i=1

work simultaneously: Prof. Cesar de Prada ISA-UVA



sets | units/ul, u2, u3/
| periods [ m,t/

parameters costea(i) starting up cost of a unit
/ ul=2800, u2=2000, u3=1900 /
costeKg(i) cost per Kg per period / ul=5, u2=3, u3=8/
capacidad(i) capacity /u1=1900, u2=1700, u3=2900/
demanda(j) demand per period / m= 2500, t = 3500/,

variables y(i,J) unit | works in period j
z(i)  unit | start up that day
coste total cost per day

binary variables y, z;
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equations produccion(j) production per period
restriccion(i,j) constraintsin z
costetotal total cost;

produccion(j).. sum(i, y(i,j)*capacidad(i)) =g= demanda());

restriccion(i,)).. z(i) =g=y(i,));

costetotal..  coste =e= sum(i,
costea(i)*z(i)+costeKg(i)*capacidad(i)*sum(j,y(i,))));

model pinturas production planning / all /;
solve pinturas minimizing coste using mip;
display coste.l
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Paint factory

Now production w; of each unit is no longer equal to capacity C; and
we have to distinguish between morning and afternoon w;

3,2
min > ¢z, +pw;,
Vi i j=1

Cy;=zw; 20 1=123 =12

Total cost
per day

3
D wuy; 2D, j=12
=1

Z; 2 Y; 1=1,23 =12

Variable z;is 1 if unit i has been started up in the
morning or in the afternoon
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Blending with discrete batch sizes

Capacity Raw materials | A B C Profit
unit kg/day required to Kg Kg Kg €/Kg
1 8000 manufacture

one Kg of
2 10000

Product p1 04 |06 |O 0.16

Each unit works with Product p2 0 0.3 |07 |02
batches of 2000Kg

Availability © | 6000 |w

Which amounts of p1
and p2 should be
manufactured in order
to maximize profits?
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Blending with discrete batch sizes

Variables:
X, Kg of p1 manufactured per day

X, Kg of p2 manufactured per day

max 0.16x, +0.2x,
0.6x, +0.3x, <6000

X, =2000y. 1=1,2
O0<y, <4 0<y,<5
y. Integer

X; must be a multiple
of 2000 Kg, the batch
size
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Branch and Bound (B&B) algorithm

max 0.16x, +0.2X,
0.6x, +0.3x, <6000

X, =2000y, 1=12
0<y, <4 0<y, <5
y. integer

The relaxed problem is an LP
one and its solution provides
un upper bound Jr* of J*:

J* < 2800

1
Relaxation
0<y, <4
0<y,<5 LP
y*=(2.5, 5)
J*=2800

ylﬁ‘z/ 2 Branching \ Y12 3

Next, the two possible

alternatives for y,, the only
real variable of the relaxed
solution, will be examined
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Branch and Bound (B&B) algorithm

max 0.16x, +0.2x, Node - L)
0.6x, +0.3x, < 6000 n"° osvisd 1
oL 0<y,<5 Relaxation
X; =2000y, 1=1,2 P y*=(2.5, 5) x;
3#=2800

0<y, <4 0<y, <5

y. integer y;<2 2 Branching \ y.> 3
3 Relaxation

LP - No more branching is possible at
Current best O<y, <2 node 2. The B&B finish if the gap
feasible solution 0=y, <5 between the upper and lower bounds
(incumbent): = ¥*=(2,9) X is less then a certain desired
Lower bound of J* —+— J;*=2640 accuracy

4 Fathoming Prof. Cesar de Prada ISA-UVA



2800

Relaxation
LP

ylﬁyz Branching \ylz 3

?? o0 Another
. feasible
2640 Relaxation solution, but
Incumbent with lower
cost function
No more than the

branching is Fathoming
made in this

node as a

feasible Hence, the solution is: y*=(2, 5), x*=(4000, 10000)
solution of _ _

the MILP is ‘And the optimal profit 2640 €

found

Fathoming incumbent
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Solving MINLP: Branch and bound

min  J(X,y)
X,y Relaxed to an NLP

h(x,y):O at each node h(,x,y):O

g(x,y)<0 g(x,y) <0

xeX, yei0lf xeX, 0<y, <1
Relaxation

NLPs provides

Branchl_ng Lower bounds
Fathoming
‘ Integer solutions iny
provide Upper

\ bounds
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L1
A

(C1, C2, C3)

L3

Super-structures

L6

L9

> B (98% C1)

U-2 Representation of all
possible design
alternatives. Which is the
best one?

\IJ'%-L4

L7

U-1

L8

L10

> C (97% C2)

0-1 Variables indicate if
a stream or unit exists
or not

U-3

L11

> D (99% C3)
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Turning off continuous variables

One can force the continuous variable g to have a value 0

or a positive one, as a function of a logic condition
represented by a binary variable y:

4
L

U

continuous variable , e.g.. flow
lower bound
upper bound

Ly <q< Uy

Never use the
product yq because
this is a non-convex
term

If y=0 0<gq<0=q=0

if y=1 L<q<U
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Multiperiod

Activation of the operation of a unit i1 at time periods t
=1, 2, ... T using the binary variable y;.. The uniti can
exists or not (using the binary variable z)),

T
Zyit <Tz, If z,=0 then all y,,are zero
t=1

Is an equivalent, and
usually tighter, alternative
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Turning constraints on/off

Activation and deactivation of constraints associated to a
stream or process unit

constraints h(x)=0 g(x)<0

slack var iables s,v

h(x)+s—v=0

s+v<U,(1-y) U,large number

g(x) - U,(1-y) <0

s>0v=>0

If y=0 then h(x)and g(x) are notconstrained
if y=1 then s=0,v=0,h(x)=0,9(x)<0

Prof. Cesar de Prada ISA-UVA



Switching constraints

The first or second constraint is activated as a function
of the value of a binary variable y

Either g,(x)<0, or g,(x)<0
91(X)_U(1_y)£o

g,(x)-Uy <0

If y=0then g,(x)<U,qg,(x)<0
If y=1then ¢,(xX)<0, g,(x)<U

U large upper limit Big M
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Conditional constraints

The second constraint is activated as a function of the
value of the first one

If g,(x)<0, then g,(x)<0

y,,Y, associated with P, = P,

Yi=Y,

-Myy, <9,(x) <M, (1-y,)

-M,y, <9,(X) <M, (1-y,)

If y,=0then ¢g,(X)<M,Y,,d,(x)any value
If y =1then ¢g,(xX)<0, y,=1 g,(x)<0

M large value
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Process synthesis

A product C can be manufactured (Process I) from other B that can be
purchased on the market or manufactured from product A in two
different and excluding ways (Processes Il and Ill). Represent the
different alternatives and find the best way of producing it.

o g
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Process synthesis

Conversions: Maximum capacity
Process I C=0.9B Process I: 2 ton/h of C
Process Il: B =In(1 +A) Process Il: 4 ton/h of B
Process lll: B =1.2In(1 + A) Process lll: 5 ton/h of B
Price Costs
A:1.800 €/ton Fixed (103 €/h) Variable (103 €/ton)
B: 7.000 €/ton ProcessI: 3.5 2
C: 13.000 €/ton Process || 1 1
Process lll: 1.5 1.2

Market B maximum: 2 ton/h |
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Process synthesis (Superstructure)

A2 BZ

2

C
- o ——
Bt
Bg Y3

ax PR=13C-1.8A,-1.8 A,-7B,-3.5-2C-1.0y, - 1B, - 1.5y, - 1.2B,

Y1

S .a.
C,A, A, B, B, B;>=0
Pl: C-0.9(B,+B,+B,) = 0 B, <4y,
PIl: B,-In(1+A,) = 0 B, <95y, Y1, Y2 Y3 =0, 1
PIII: B,-1.2In(1+Ag) = 0 B, <2y,
C<?2 Yo + ySS 1
Bt: BZ + 83 +Bl -

Constraints Prof. Cesar de Prada ISA-UVA



Positive Variables

a2 materia prima para el proceso 2
a3 materia prima para el proceso 3
b2 produccion de producto B en el proceso 2
b3 produccion de producto B en el proceso 3
bl cantidad de producto B que se puede adquirir en el mercado
bt cantidad de producto B que se consume en el proceso 1
cl capacidad de produccion del producto ¢ en el proceso 1 ;
Binary Variables
yl existencia de compra exterior de B
y2 existencia del proceso 2
y3 existencia del proceso 3 ;
Variable
bene beneficio total en millones de $ por ano ;
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e|las restricciones inout2 e inout3 se han convexificado

inoutl.. c1 =e= 0.9*bt ;

inout2.. exp(b2) - 1 =e=a2;
inout3.. exp(b3/1.2) - 1 =e=a3;
mbalb.. bt =e= b2 + b3 + bl ;
logl.. cl=L=2;

log2.. b2 =L=4*y2,;

log3.. b3 =L=5*3;

log4.. Bl =L=2%1

Rest.. y,+y; =L=1

coste.. bene = E = 13*cl -1.8*a2 - 1.8*a3 -7*bl - 3.5 - 2*c1- y2 -b2 - 1.5*y3
- 1.2*b3;

Prof. Cesar de Prada ISA-UVA



LOWER LEVEL UPPER MARGINAL

---- VAR a2 : +INF

---- VAR a3 1.524 +INF :

---- VAR b2 : +INF  3.950
---- VAR b3 1.111 +INF  1.714
---- VAR b1l 1.111 +INF :

---- VAR Dbt 2.222 +INF  2.900
---- VAR cl1 2.000 +INF :

---- VAR y1 1.000 1.000 EPS
- VAR y2 : 1.000 EPS
---- VAR y3 1.000 1.000 EPS
---- VAR bene 5.145 +INF

Y, Bi C
| <
B3 y3
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Modelling propositional logic
expressions

P; expression or logic variable with values false/true (0/1)

A logic proposition is a set of logic expressions linked by the

logic operators: _ _
A intersection v union

P negation @ exclusiveor

The implication P, = P, Isequivalentto P, v P,

The logic expressions can be formulated as equations
associating P (true / false) with y (1/0), and (no P) with 1-y
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Logic operators

conjunction

disjunction

AND

OR 1 0
1 1 1
0 1 0
EOR 1 0
®
1 0 1
0 1 0
Morgan (A+B)=AB
Laws AB=A+B
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Logic expressions / equations

o |
PLvP,vbh y, +y,+y; =1
PAP, AP, vy, =21 vVy,=21 y,=1
P, =P, 1-y,+y, 21 or vy <Yy,
P ifandonlyif P, vy, =Yy,
oneamong P,P,,P, y,+Vy,+y,=1
P,V P, =P Yi=Ys Y.=Y;
Using these equivalences, it is possible to convert any
logic expression P to an associated set of equations in the

binary variables y, if the logic expression is written in Its
normal conjunctive form Prof. Cesar de Prada ISA-UVA



normal conjunctive form

.
Ql /\QZ/\.../\Qn

Where Q; are logic expressions written as disjunctions

In order to transform any logic expression to this format:
1 Replace the implication by its equivalent expression

P=P, &P VP,

2 Apply the Morgan’s laws to move inside the negations

(Pl/\PZ)C:)El\/P_Z (P1VP2)<:>51/\P_2
3 Use the distributive property to arrive to normal conjunctive
form (PLAP) VP, < (PVvP)A (P, vFy)
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Example

(P,AP,)VvP, = (P, vFP)

Step 1
[(Pl AP, )V Ps]V (P, v Ps)

Step 2

Step 3
(El\/P_Z)V (P, v Ps)]/\[P_sv (P, v PS)]

:ElvP_zv P, vPS]/\[P_3v P, vPS]
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Example

[PlvavP4vP5]/\[P3vP4vP5]
QA Q;
Q,=PVvP,VvP,vP—> 1-y +1-y,+y,+Yy.>1
Q,=P,vP,vPh.—> 1-y.+y,+Yy.>1

Then Q, AQ, Isequivalent to

yl+y2_y4_y5gl (PAPR) VP, = (P, vF)
~Y3+Y,+Ys20
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Acetone production
(Raman & Grossmann, CACHE)

One wishes to select the best way to produce acetone CH;COCH;,
from alcohol (CH;CH,OH) and methane (CH,). There are different
pathways to obtain acetone that are listed next, for which the
appropriate catalyser is available as well as the intermediate
iInorganic compounds, with the exception of CrO5 y O,. Formulate
the feasibility of the chemical reactions in mathematical form.

CH,CO,C,H —=>=2/=820 5, CH,COCH,CO,C,H,
CH,COCH,C0,C,H, —*%—CH,COCH, +C,H,OH +CO,

CH.CN +CH Mgl —2 5 CH,C(NMgl )CH, —2/%L_,CH_.COCH,
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Acetone production
(Raman & Grossmann, CACHE)

CH,CHO + CH ,Mgl —£%"%:>_, CH ,CHOHCH,
CH,CHOHCH, —=%/M%% ,CcH_COCH,

CH, =C(CH,), —2/"2"0% ,CH COCH, +HCO,H
CH,l %=L 5 CH,Mgl —"=2 5(CH, ),COH
(CH,),COH — CH, =C(CH,),

CH, +1, = CH,I +HI
CH, +Cl, — CH,Cl + HCI

CH.CH,OH +0, —£2%%8 ,CH.CHO
CH,Cl + NaCN —"22 NaCl + CH,CN
CH,COOH +C,H.OH — CH,CO,C,H.
CH.,CHO +0, - CH,COOH
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duction
(Raman & Grossmann, CACHE)

Formulation

Among all those chemical reactions, one must select those that allow
synthesizing acetone from the given row materials and catalysers.

In order to formulate a mathematical optimization problem, we will express all
chemical reactions as propositional logic expressions using the operators:

v (OR), A (and),= (implication), y —(negation)

A+B—>C+D AAB=CAD

They can be formulated as
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duction
(Raman & Grossmann, CACHE)

Next, we will formulate these logic propositions in normal
conjunctive form following these steps:

1. Remove implications

: . Example
A = B isequivalentto —Av B
AAB=CAD
2. Displace negations inside —.(A/\ B)v (C A D)
—~(ArB) <= (—A)v(-B) —Av—Bv(CAD)
—~(Av B) < (-A)A(-B) (-Av -BvC)A(—-Av—-Bv D)

3. Use the distributive property
(AAB)vC < (AvC)A(BVC)
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duction
(Raman & Grossmann, CACHE)

Then, each component of the conjunction can be converted into a
equation by assigning a binary variable y to every of its variables or 1-y if
it is affected by a negation, and using the translation of the operators

(-Av—-BvC)A(-Av—-Bv D)

1_yA+1_yB+yC >1
1_yA+1_yB+yD >1

yA+yB_yCS1
YA"'yB_YDSl
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duction
(Raman & Grossmann, CACHE)

CH,CHO +0, — CH,COOH

CH,CHO A0, = CH,COOH

—(CH,CHO AO, )v CH,COOH

(~CH,CHOv -0,)v CH,COOH

(~CH,CHO v CH,COOH) A (-0, v CH,COOH)

y, = CH,CHO

Y, = 02
y, = CH,COOH

1-y,+Yy;>1 Y2 —Y3<0

The optimization
problem can be
formulated as
minimizing a cost
under the set of
constraints
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A dynamic problem: batch reactor

An endothermic batch reactor operates for
one hour periods, with a load A according to
the parallel reactionsA— B and A— C,
but only the B product has commercial
value. The speeds of reaction are given by:

B C .
k, =10° exp(10000/RT)
k. =5*10" exp(20000/ RT)

Find the temperature profile that maximizes the final
production of B, if the temperature must always be bellow
139 °C
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Xp
lc
T

Dynamic Optimization (DO)

max % /\/
dx

th:_(kB +kC)XA XA(O): Ao I
dx 1h
g~ KeXa Xe(0)=0 k, =10° exp(10000/RT)

T(t) <139 k. =5*10" exp(20000/RT)

time

time
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Xp
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T

Ty, Ty Tg,o Ty
mTzi:lx Xz (1) — e
dx
th:_(kB +kC)XA XA(O): Ao
e _ 0) =0 6
g e Xa x5 (0) = k, =10° exp(10000/RT)
T, <139 k. =5*10" exp(20000/RT)

Decision variables parameterization

time

time
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Sequential solution using simulation

minJ(x,u)
u

X(t) = f(x(t),u(t)) y(t) = g(x(t), u(t)
y<y(t)<y u<ut)<u

Path constraints on x / penalty

functions
Prof. Cesar de Prada ISA-UVA
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