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Hybrid problems 

 Many decision problems, besides variables that can be 
represented by real numbers, involve other decisions of 
a discrete nature that can be represented naturally by 
integer or binary variables. 

 On other occasions, the formulation of the problem 
involves not only quantitative models but rules or 
conditions that are better described by logical 
expressions.  

 The optimization problems that deal with these types of 
hybrid systems that involve real and integer variables 
are called mixed integer programming (MIP). 

 If all the decision variables are integers, then the 
problem is classified as one of integer optimization 
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Example: Gang of burglars 

Several burglars at work are in a store where there are N distinct objects. 
Each object j has a weight pj and a value vj. They have a van that can carry 
a maximum load P. Which objects should be selected by the burglars in 
order to maximize the benefit of the robbery? 

The decision to be made on each object is to select it or not.  A binary 
variables yj can be used for this purpose 
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Modelling logic with binary variables 

Select one alternative and only one 
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Example: Salesman problem 

A salesman must travel from his town to N others going back home 
without staying twice in any of them. He knows the distance between 
any two towns. Which is the best route  in order to travel through a 
minimum distance? 
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The decision to be made is to travel from town i to 
town j or not. We can associate a binary variable yij 
to this decision for each couple of towns and 
denote as cij the distance between them 
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Assigning tasks 

In a workshop n people able to develop n tasks with different 
performances are working. The time required by each person to 
develop a given task is known. How the different tasks should be 
assigned to each person in order to minimize the time required to 
perform the n tasks?  

Variables 

i people 

j  tasks 

tij  time required by person i to finish task j 

yij binary variable, is 1 if the person i is assigned task j 
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Assigning tasks 
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Total time required to complete 
the n tasks 

Each person must have a task 
assigned and only one 

Each task have to be assigned to 
one person and only to one 

yij binary 
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Types of mixed-integer problems 
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Slack variables can be 
used to transform 
problems with equalities 
into inequalities and vice 
versa, or min problems 
into max ones 
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Solution methods 

 One possible approach consists of relaxing the integer variables into real 
ones, solving the corresponding NLP problem and then approximating the 
solution to the closest integer, usually leads to wrong solutions, except 
perhaps when a high number of values are admissible for each integer 
variable.  

 Another method is to enumerate all possible combinations of integer 
variables, solving each of the associated NLP problems that results when 
the integer variables are given a fixed value and then choose the 
combination that provides a better cost function. Nevertheless, this is not 
a practical approach as the number of combinations grows exponentially 
with the number of integer variables.  

 The most popular solution method is based on an intelligent selection of 
the integer combinations known as Branch and Bound (B&B) 

 There are many other approaches, most of them using a succession of 
two phases; the so called Primary and Master ones. These phases 
provide upper and lower bounds that narrow the gap progressively. 
Examples: Outer Approximation (OA), Generalised Benders 
Decomposition (GBD)   
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Branch and Bound (B&B) 

This method is based on an intelligent search of the optimum 
combining the choice of integer combinations with relaxations 
and the generation of lower and upper bounds of the cost 
function that  leads to the solution.  

It uses three main ideas: 

 Relaxation, that covert integer into real variables and allows 
to compute bounds on the cost function. 

 Branching, that generate alternatives of combinations of 
integer variables in the decision tree. 

 Fathoming, examining the bounds allows to eliminate groups 
of integer combinations improving the search in this way. 
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Relaxation 

A relaxation of an integer variable in a MILP or MINLP 
problem consists of allowing it to take any real value between 
its maximum and minimum range. For instance, a binary 
variable could take values within the interval 0 ≤ yj ≤ 1. So, in 
the relaxed problem, all variables, x and y, are real ones and 
the corresponding problem is LP or NLP. 

Consequently, as the search space is widening, the solution of the 
relaxed problem is a lower bound (upper bound if the problem is a 
maximization one) of the original MILP or MINLP. The relaxation is 
made with the purpose of obtaining such a bound. 

Original problem domain 

Relaxed problem domain 
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Branch and Bound (B&B) algorithm 

Example  ILP (Himmelblau)  

Max   J = 86 y1 + 4 y2 + 40 y3 

under 

774 y1 + 76 y2 + 42 y3 ≤ 875 

67 y1 + 27 y2 + 53 y3 ≤ 875 

y1, y2, y3 ∈ 0,1 

0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

1 
Relaxation 

y2= 0 y2= 1 2 Branching 

The relaxed problem is a LP 
one and its solution provides 
an upper bound  Jr* of J*:     
J* ≤ 129.1 

Then, the two possible 
integer options for y2, (the 
only remaining real number 
in the solution) are examined 

1 
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Branch and Bound (B&B) algorithm 

Max   J = 86 y1 + 4 y2 + 40 y3 

under 

774 y1 + 76 y2 + 42 y3 ≤ 875 

67 y1 + 27 y2 + 53 y3 ≤ 875 

y1, y2, y3 ∈ 0,1 

0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

y2= 0 y2= 1 
2 Branching 

LP 

3 Relaxation 

Current best 
feasible solution 
(incumbent): 
Lower bound of J* 

1 

2 

4 Fathoming 

No more branching is possible at 
node 2. The B&B finish if the gap 
between the upper and lower bounds 
is less then a certain desired 
accuracy 

tol≤
+

−

inf

infsup

cota1
cotaCota

Node 
nº 
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B&B 

0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

      1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

0 ≤ y1 ≤ 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0.978,1, 1) 

Jr*=128.11 

y2= 0 y2= 1 2 Branching 

y1= 0 
y1= 1 

129.1 
J* 
126.0 

128.11 
J* 
126.0 

Candidate 
solution. 
Incumbent. No 
more branching 
is possible in 
this node. The 
J of the 
candidate is a 
lower bound for 
all branches. 

Branching 

Relaxations 

1 

2 3 

129.1 
J*       
-∞ 

Upper bound 
in this branch, 
and, as 128.1 
< 129.1, it is 
also the new 
upper bound 
of the 
problem 

If the gap in node 3 is higher than the 
desired accuracy, new branching 
should be made. Otherwise, the B&B 
finish and the incumbent is the 
optimum 

Fathoming 

Upper 
bound for 
all 
solutions 
bellow  
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B&B 

0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

      1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

0 ≤ y1 ≤ 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0.978,1, 1) 

Jr*=128.11 

y2= 0 y2= 1 2 Branching 

y1= 0 
y1= 1 

129.1 
J* 
126.0 

128.11 
J* 
126.0 

Incumbent. No 
more branching is 
possible in this 
node. Branching 

Relaxations 

Each branching 
provides new upper 
bounds in the branch 

1 

2 3 

129.1 
J*       
-∞ 

Upper 
bound in 
this 
branch, 

Each feasible integer solution provides 
a lower bound of the problem 

Fathoming 

The values of the bounds can be 
used to fathom branches without 
the need of computing its values 
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B&B 

0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

      1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

0 ≤ y1 ≤ 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0.978,1, 1) 

Jr*=128.11 

y2= 0 y2= 1 2 Branching 

y1 =0 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0,1, 1) 
Jr*=44.0 

Fathoming 

y1= 0 
y1= 1 

129.1 
J* 
126.0 

128.11 
J* 
126.0 

Incumbent 

Branching 

Relaxations 

1 

2 3 

4 

129.1 
J*       
-∞ 

Relaxation 

New integer 
feasible solution, 
but as the 
associated cost is 
lower than the 
lower bound, it 
can be discarded 
and the node 
fathomed 

No more branching is 
allowed in this node 
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B&B 
0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

      1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

0 ≤ y1 ≤ 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0.978,1, 1) 

Jr*=128.11 

y2= 0 y2= 1 2 Branching 

y1 =0 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0,1, 1) 
Jr*=44.0 

y1 = 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(1, 1, 0.595) 

Jr*=113.81 

Fathoming 

y1= 0 
y1= 1 

129.1 
J* 
126.0 

128.11 
J* 
126.0 

Incumbent 

Branching 

Relaxations 

1 

2 3 

4 5 

129.1 
J*       
-∞ 

Relaxation 

The value of J*r is 
lower of the lower 
bound of 126. Any 
branching from here 
will provide a lower 
value a J and the node 
can be fathomed 

Fathoming 
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B&B 
0 ≤ y1 ≤ 1 
0 ≤ y2 ≤ 1 
0 ≤ y3 ≤ 1 

y*=(1, 0.776, 1) 
Jr*=129.1 

LP 

      1 
Relaxation 

0 ≤ y1 ≤ 1 
y2 = 0 

0 ≤ y3 ≤ 1 
y*=(1, 0, 1) 
Jr*=126.0 

0 ≤ y1 ≤ 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0.978,1, 1) 

Jr*=128.11 

y2= 0 y2= 1 2 Branching 

y1 =0 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(0,1, 1) 
Jr*=44.0 

y1 = 1 
y2 = 1 

0 ≤ y3 ≤ 1 
y*=(1, 1, 0.595) 

Jr*=113.81 

fathoming 

y1= 0 
y1= 1 

129.1 
J* 
126.0 

128.11 
J* 
126.0 

Incumbent 

Branching 

1 

2 3 

4 5 

129.1 
J*       
-∞ 

fathoming 

As no more 
branching is 
possible, the 
incumbent of node 
2 is the optimal 
solution 
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Integer and binary variables 

Any integer variable z taking values between 0 and n, can be substituted 
by a set of binary variables, that is variables that only take 0 or 1 values: 

 z = y1 + 2 y2 + 3 y3 + …. + n yn 

 1 ≥  y1 + y2 + y3 + …. + yn 

 y = {0 , 1} 
 

Also      z = 2 y1 + 22 y2 +…..+ 2k yk     does the same with less integer 
variables 

This can represent integers up to 2k+1-1 

Then, mixed integer optimization problem can always be formulated in 
terms of binary variables 
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Example: Paint factory 

A paint manufacturing facility has three production units with 
capacities given in the table bellow. The costs associated to the 
start up of the unit and to producing one Kg of paint are also given 
there. One production unit can be started either in the morning or in 
the afternoon, but, once started, must remain working at least for 
half a day (one period: morning or afternoon) 

Unit Start up cost  € Cost per Kg of 
paint produced € 

Capacity, 
Kg/period 

1 2800 5 1900 
2 2000 3 1700 
3 1900 8 2900 



Prof. Cesar de Prada   ISA-UVA 22 

Paint factory 

If one unit was started in the morning and continues operating in 
the afternoon, obviously, only generates starting up costs in the 
morning. All units are switched off at night, and the planning of the 
day operation is made daily in the morning according to the 
existing demand. 
 
Assume that a certain day the factory must deliver 2500 kg of paint 
in the morning and 3500 kg in the afternoon. Which units should 
be used and when in order to reduce the cost as much as 
possible?  
 
How much would change the cost if the demand in the afternoon 
were of 3600Kg? 
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Paint factory 

1 

3 

2 

Variables: 

i  unit number  (1, 2, 3) 

j  working period: 1 morning  2 afternoon 

yij  binary variable: equal to 1 if the unit i works     
 in the period j 

ci  start up costs of unit i 

pi  production costs of a Kg of paint in unit i 

wi production of unit i in a period  (= capacity)  

Dj  paint demand in the period j 

zi   auxiliary binary variable , 1 if yi1 or yi2 are 1 
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Paint factory 

1 

3 

2 
2,13,2,1

2,1
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Variable zi is 1 if unit i has been started up in the 
morning or in the afternoon 

∑
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1
1 1

i
iyOther possible logic constraint: If we assume 

that in the morning no more than a unit can 
work simultaneously: 

Excel 

Total cost 
per day 
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GAMS 

sets   i   units / u1, u2, u3 / 
          j  periods     /  m, t / 
 
parameters costea(i)  starting up cost of a unit 
   / u1=2800, u2=2000, u3=1900 / 
                   costeKg(i) cost per Kg per period / u1=5 , u2=3, u3=8 / 
                   capacidad(i) capacity /u1=1900, u2=1700, u3=2900/ 
                  demanda(j) demand per period / m= 2500, t = 3500/; 
 
variables    y(i,j)    unit I works in period j 
                z(i)      unit I start up that day 
                coste     total cost per day 
binary variables y, z; 
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GAMS 

equations produccion(j) production per period 
                 restriccion(i,j)    constraints in z 
     costetotal    total cost; 
 
              produccion(j)..  sum(i, y(i,j)*capacidad(i)) =g= demanda(j); 
  restriccion(i,j).. z(i) =g= y(i,j); 
  costetotal..     coste =e= sum(i,                             
  costea(i)*z(i)+costeKg(i)*capacidad(i)*sum(j,y(i,j))); 
 
 
model  pinturas production planning / all /; 
solve   pinturas  minimizing coste using mip; 
display  coste.l 



Paint factory 
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1 

3 

2 

2,1j3,2,1iyz

2,1jDyw

2,1j3,2,1i0wyC

wpzcmin
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Variable zi is 1 if unit i has been started up in the 
morning or in the afternoon 

Total cost 
per day 

Now production wi of each unit is no longer equal to capacity Ci and 
we have to distinguish between morning and afternoon  wij  
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Blending with discrete batch sizes 

1 

2 

Mixing 
unit 

Capacity 
kg/day 

1 8000 
2 10000 

Raw materials 
required to 
manufacture 
one Kg of 

A   
Kg 

B     
Kg 

C       
Kg 

Profit 
€ / Kg 

Product p1 0.4 0.6 0 0.16 

Product p2 0 0.3 0.7 0.2 

Availability ∞ 6000 ∞ 

p1 

p2 

Which amounts of p1 
and p2 should be 
manufactured in order 
to maximize profits? 

A 

B 

C 

Each unit works with 
batches of  2000Kg 
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Blending with discrete batch sizes 

1 

2 

p1 

p2 

A 

B 

C 

Variables:  

x1 Kg of p1 manufactured per day 

x2 Kg of  p2 manufactured per day 

 

ntegeriy
5y04y0

2,1iy2000x
6000x3.0x6.0

x2.0x16.0max

i

21

ii

21

21

≤≤≤≤
==

≤+
+

xi must be a multiple 
of 2000 Kg, the batch 
size 
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Branch and Bound (B&B) algorithm  

0 ≤ y1 ≤ 4 
0 ≤ y2 ≤ 5 
y*=(2.5, 5) 
Jr*=2800 

LP 

1 
Relaxation 

y1≤ 2 y1≥ 3 2 Branching 

The relaxed problem is an LP 
one and its solution provides 
un upper bound Jr* of J*:     
J* ≤ 2800 

Next, the two possible 
alternatives for y1, the only 
real variable of the relaxed 
solution,  will be examined 

ntegeriy
5y04y0

2,1iy2000x
6000x3.0x6.0

x2.0x16.0max

i

21

ii

21

21

≤≤≤≤
==

≤+
+
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Branch and Bound (B&B) algorithm 

LP 

1 
Relaxation 

0 ≤ y1 ≤ 2 
0 ≤ y2 ≤ 5  
y*=(2,5) xi 
Jr*=2640 

2 Branching 

LP 

3 Relaxation 

Current best 
feasible solution 
(incumbent): 
Lower bound of J* 

0 ≤ y1 ≤ 4 
0 ≤ y2 ≤ 5 

y*=(2.5, 5) xi 
Jr*=2800 

1 

2 

4 Fathoming 

Node 
nº 

y1≤ 2 y1≥ 3 
ntegeriy

5y04y0
2,1iy2000x

6000x3.0x6.0
x2.0x16.0max

i

11

ii

21

21

≤≤≤≤
==

≤+
+

No more branching is possible at 
node 2. The B&B finish if the gap 
between the upper and lower bounds 
is less then a certain desired 
accuracy 
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B&B 
0 ≤ y1 ≤ 4 
0 ≤ y2 ≤ 5 
y*=(2.5, 5) 
Jr*=2800 LP 

      1 
Relaxation 

0 ≤ y1 ≤ 2 
0 ≤ y2 ≤ 5 
y*=(2, 5) xi 
Jr*=2640 

3 ≤ y1 ≤ 4 
0≤ y2 ≤ 5 
y*=(3,4) 
Jr*=2560 

2 Branching 

2800 
J* 
2640 

Incumbent  

No more 
branching is 
made in this 
node as a 
feasible 
solution of 
the MILP is 
found 

Relaxations 

Another 
feasible 
solution, but 
with lower 
cost function 
than the 
incumbent 

1 

2 3 

2800 
J*       
-∞ 

Fathoming 

y1≤ 2 y1≥ 3 

Fathoming 

Hence, the solution is: y*=(2, 5), x*=(4000, 10000) 

And the optimal profit  2640 € 



Solving MINLP: Branch and bound 
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{ }1,0y,Xx
0)y,x(g
0)y,x(h

)y,x(Jmin
y,x

∈∈
≤
=

Relaxed to an NLP 
at each node 

1y0,Xx
0)y,x(g
0)y,x(h

)y,x(Jmin

i

y,x

≤≤∈
≤
=

NLPs  provides 
Lower bounds 
 
Integer solutions in y 
provide Upper 
bounds 

Relaxation 
Branching 
Fathoming 
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Super-structures 

A

B

C

D

(C1, C2, C3)

(98% C1)

(97% C2)

(99% C3)

U-1

U-2

U-3

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

A

B

C

D

(C1, C2, C3)

(98% C1)

(97% C2)

(99% C3)

U-1

U-2

U-3

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

Representation of all 
possible design 
alternatives. Which is the 
best one? 

0-1 Variables indicate if 
a stream or unit exists 
or not 
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Turning off continuous variables 

One can force the continuous variable q to have a value 0 
or a positive one, as a function of a logic condition 
represented by a binary variable y: 

UqL1y  if
0q0q00y  if

UyqLy

≤≤=
=⇒≤≤=

≤≤

q      continuous variable , e.g..  flow 
L      lower bound 
U      upper bound 

Never use the 
product yq because 
this is a non-convex 
term 



Multiperiod 
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Activation of the operation of a unit i at time periods t 
= 1, 2, …T using the binary variable yit. The unit i can 
exists or not (using the binary variable zi), 

∑
=

≤
T

1t
iit Tzy If zi = 0  then all yit are zero  

but 
T,...2,1tzy iit =≤ Is an equivalent, and 

usually tighter, alternative 
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Turning constraints on/off 

Activation and deactivation of constraints associated to a  
stream or process unit 

0)x(g,0)x(h,0v,0sthen   1yif
dconstraine not are  )x(gand   )x(hthen  0yif

0v,0s
0)y1(U)x(g

 number large U,)y1(Uvs
0vs)x(h

v,s  iablesvarlacks
0)x(g0)x(h  sconstraint

2

1

≤====
=
≥≥

≤−−
−≤+
=−+

≤=
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The first or second constraint is activated as a function 
of the value of a binary variable y 

U)x(g,0)x(gthen1yif
0)x(g,U)x(gthen0yif

0Uy)x(g
0)y1(U)x(g

0)x(gro,0)x(gEither

21

21

2

1

21

≤≤=
≤≤=

≤−
≤−−

≤≤

U large upper limit 

Switching constraints 

Big M 



Conditional constraints 
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The second constraint is activated as a function of the 
value of the first one 

0)x(g,1y,0)x(gthen1yif
any value )x(g,y,M)x(gthen0yif

)y1(M)x(gyM
)y1(M)x(gyM

yy
PP with  associated  y,y

0)x(gthen,0)x(gIf

2211

22111

22222

11111

21

2121

21

≤=≤=
≤=
−≤≤−
−≤≤−

≤
⇒

≤≤

M large value 
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Process synthesis 

 A product C can be manufactured (Process I) from other B that can be 
purchased on the market or manufactured from product A in two 
different and excluding ways (Processes II and III). Represent the 
different alternatives and find the best way of producing it. 

 Process II 

 Process III 

  Process I 
A1 

A2 

A3 

B1 

B2 

B3 

C 
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Process synthesis 

Conversions: 

Process I:    C = 0.9B 

Process II:   B = ln(1 + A) 

Process III:  B = 1.2ln(1 + A) 

Maximum capacity 

Process I:      2 ton/h of C 

Process II:     4 ton/h of B 

Process III:    5 ton/h of B 

Price 

A: 1.800 €/ton 

B: 7.000 €/ton 

C: 13.000 €/ton 

Costs 

                     Fixed (103 €/h)   Variable (103 €/ton) 

Process I:       3.5                       2 

Process II:       1                         1 

Process III:     1.5                       1.2 

Market B maximum:    2 ton/h  



Prof. Cesar de Prada   ISA-UVA 42 

Process synthesis (Superstructure) 
B1 

 Proceso II 

 Proceso III 

  Proceso I 
A1 

A2 

A3 

B2 

B3 

C 

y3 

y2 
y1 

 max  PR = 13C -1.8A2 - 1.8  A3 -7B1 - 3.5 - 2C - 1.0y2  -  1B2  - 1.5y3 - 1.2B3 

PI:   C-0.9(B1+B2+B3) = 0 

PII:  B2-ln(1+A2) = 0 

PIII: B3-1.2ln(1+A3) = 0 

Bt = B2 + B3 +B1 

Balances 
22 y4B ≤

33 y5B ≤

11 2yB ≤

s .a. 
C, A2, A3, B1, B2, B3 >= 0 

y1, y2, y3 = 0, 1 

Bt 

y2 + y3≤ 1 2≤C

Constraints 
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GAMS 

Prof. Cesar de Prada   ISA-UVA 

Positive Variables 
a2 materia prima para el proceso 2 
a3 materia prima para el proceso 3 
b2 produccion de producto B en el proceso 2 
b3 produccion de producto B en el proceso 3 
b1 cantidad de producto B que se puede adquirir en el mercado 
bt cantidad de producto B que se consume en el proceso 1 
c1 capacidad de produccion del producto c en el proceso 1 ; 

Binary Variables 
y1 existencia de compra exterior de B 
y2 existencia del proceso 2 
y3 existencia del proceso 3 ; 

Variable 
bene   beneficio total en millones de $ por ano ; 
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GAMS 

Prof. Cesar de Prada   ISA-UVA 

•las restricciones inout2 e inout3 se han convexificado 
 
inout1.. c1 =e= 0.9*bt ; 
inout2.. exp(b2) - 1 =e= a2 ; 
inout3.. exp(b3/1.2) - 1 =e= a3 ; 
mbalb.. bt =e= b2 + b3 + b1 ; 
log1..    c1 = L= 2 ; 
log2..    b2 = L= 4*y2 ; 
log3..    b3 = L= 5*y3 ; 
log4..    B1 = L= 2*y1 
Rest..    y2 + y3  = L= 1 
coste..  bene = E = 13*c1 -1.8*a2 - 1.8*a3 -7*b1 - 3.5 - 2*c1- y2 -b2 - 1.5*y3 
- 1.2*b3; 
 



GAMS 
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  Proceso I 
A3 

B3 

C 

y3 

y1 

                       LOWER     LEVEL     UPPER    MARGINAL 
---- VAR a2              .         .                  +INF       .          
---- VAR a3              .        1.524           +INF       .          
---- VAR b2              .         .                  +INF      3.950       
---- VAR b3              .        1.111            +INF      1.714       
---- VAR b1              .        1.111            +INF       .          
---- VAR bt               .        2.222            +INF      2.900       
---- VAR c1              .        2.000            +INF       .          
---- VAR y1              .        1.000            1.000      EPS        
---- VAR y2              .         .                   1.000      EPS        
---- VAR y3              .        1.000            1.000      EPS        
---- VAR bene      -INF      5.145            +INF       .  

B1 
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Modelling propositional logic 
expressions 

Pi   expression or logic variable with values false/true (0/1) 

A logic proposition is a set of logic expressions linked by the 
logic operators: 

or exclusive    negation  P

unionon  intersecti

⊕

∨∧

2121 PP    toequivalent isPPn  implicatio  The ∨⇒

The logic expressions can be formulated as equations 
associating P (true / false) with  y  (1/0), and (no P) with  1-y 
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Logic operators 

AND 1 0

1 1 0

0 0 0

OR 1 0

1 1 1

0 1 0

NOT 1 0

0 1

BAB.A
B.A)BA(

+=

=+Morgan 
Laws 

EOR 1 0 

1 0 1 

0 1 0 
 

 

p ⇒q  1 0 
1 1 0 
0 1 1 

p 

q 

⊕ 

conjunction disjunction 
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Logic expressions / equations 

3231

321

321

321

2121

212121

321

321

321

321

yyyy
1yyy

PPP
P,P,Pamong one

yyPifonly and  ifP
yyór1yy1PP

1y,1y,1y
1yyy

PPP
PPP

≤≤
=++

⇒∨

=
≤≥+−⇒

≥≥≥
≥++

∧∧
∨∨

Using these equivalences, it is possible to convert any 
logic expression P to an associated set of equations in the 
binary variables y, if the logic expression is written in its 
normal conjunctive form 
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normal conjunctive form 

Q Q Q n1 2∧ ∧ ∧

Where Qi are logic expressions written as disjunctions 

In order to transform any logic expression to this format: 
1 Replace the implication by its equivalent expression 

P P P P1 2 1 2⇒ ⇔ ∨

2 Apply the Morgan’s laws to move inside the negations 

( ) ( )P P P P P P P P1 2 1 2 1 2 1 2∧ ⇔ ∨ ∨ ⇔ ∧
3 Use the distributive property to arrive to normal conjunctive 
form ( ) ( ) ( )P P P P P P P1 2 3 1 3 2 3∧ ∨ ⇔ ∨ ∧ ∨
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Example 

( ) ( )P P P P P1 2 3 4 5∧ ∨ ⇒ ∨

Step 1 

[ ]( ) ( )P P P P P1 2 3 4 5∧ ∨ ∨ ∨

Step 2 

[ ] )PP(P)PP()PP(P)PP( 5432154321 ∨∨∧∨=∨∨



 ∧∧

−−−−−−−−

Step 3 

[ ] [ ]
[ ] [ ]
( ) ( ) ( )P P P P P P P

P P P P P P P
1 2 4 5 3 4 5

1 2 4 5 3 4 5

∨ ∨ ∨ ∧ ∨ ∨

∨ ∨ ∨ ∧ ∨ ∨
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Example 

[ ] [ ]

 toequivalent isQQThen  
1yyy1PPPQ

1yyy1y1PPPPQ
QQ

PPPPPPP

21

5435432

542154211

21

5435421

∧
≥++−→∨∨=

≥++−+−→∨∨∨=

∧
∨∨∧∨∨∨

0yyy
1yyyy

543

5421

≥++−
≤−−+ )PP(P)PP( 54321 ∨⇒∨∧



Prof. Cesar de Prada   ISA-UVA 52 

Acetone production 
 (Raman & Grossmann, CACHE) 

One wishes to select the best way to produce acetone CH3COCH3 
from alcohol (CH3CH2OH) and methane (CH4). There are different 
pathways to obtain acetone that are listed next, for which the 
appropriate catalyser is available as well as the intermediate 
inorganic compounds, with the exception of CrO3 y O3. Formulate 
the feasibility of the chemical reactions in mathematical form..  

( ) 33
/

3333

2523352223

52223
/

5223

22

3

5252

COCHCHCHNMgICCHMgICHCNCH

COOHHCCOCHCHHCCOCOCHCH

HCCOCOCHCHHCCOCH

HClOHOEt

OH

OHHCHNaOC

 → →+

++ →

 →
+
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( )
( )

( ) ( )

COOHCHOCHOCH
HCCOCHOHHCCOOHCH

CNCHNaClNaCNClCH

CHOCHOOHCHCH

HClClCHClCH
HIICHICH

CHCCHCOHCH
COHCHMgICHICH

HHCOCOCHCHCHCCH

COCHCHCHOHCHCH

CHOHCHCHMgICHCHOCH

OH

CuOCr

CHCOCHOErMg

OHOHO

SOHCrO

OHOEt

323

5223523

33

3
/

223

324

324

23233

333
/

3

233
//

232

33
/

33

33
/

33

2

32

3232

2223

423

32

→+
→+

+→+

 →+

+→+
+→+

=→

 → →

+ →=

 →

 →+
+

Acetone production 
 (Raman & Grossmann, CACHE) 
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Formulation 

Among all those chemical reactions, one must select those that allow 
synthesizing acetone from the given row materials and catalysers. 

In order to formulate a mathematical optimization problem, we will express all 
chemical reactions as propositional logic expressions using the operators: 

(negation) y on),(implicati (and), (OR), ¬⇒∧∨

DCBA +→+
They can be formulated as  

DCBA ∧⇒∧

BA M→ BMA ⇒∧

I. 

Acetone production 
 (Raman & Grossmann, CACHE) 
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Acetone production 
 (Raman & Grossmann, CACHE) 

Next, we will formulate these logic propositions in normal 
conjunctive form following these steps: 

BA   toequivalent is   BA ∨¬⇒

1. Remove implications 

2. Displace negations inside 

( ) ( ) ( )
( ) ( ) ( )BABA

BABA
¬∧¬⇔∨¬
¬∨¬⇔∧¬

3. Use the distributive property 
( ) ( ) ( )CBCACBA ∨∧∨⇔∨∧

( ) ( )
( )

( ) ( )DBACBA
DCBA
DCBA

DCBA

∨¬∨¬∧∨¬∨¬
∧∨¬∨¬
∧∨∧¬

∧⇒∧

Example 
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Acetone production 
 (Raman & Grossmann, CACHE) 

Then, each component of the conjunction can be converted into a 
equation by assigning a binary variable y to every of its variables or 1-y if 
it is affected by a negation, and using the translation of the operators 

( ) ( )DBACBA ∨¬∨¬∧∨¬∨¬

111
111

≥+−+−
≥+−+−

DBA

CBA

yyy
yyy

1
1

≤−+
≤−+

DBA

CBA

yyy
yyy
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Acetone production 
 (Raman & Grossmann, CACHE) 

COOHCHOCHOCH 323 →+

( )

)()(
)(

3233

323

323

323

COOHCHOCOOHCHCHOCH
COOHCHOCHOCH

COOHCHOCHOCH
COOHCHOCHOCH

∨¬∧∨¬
∨¬∨¬

∨∧¬
⇒∧

COOHCHy
Oy

CHOCHy

33

22

31

=
=
=

1yy1
1yy1

32

31

≥+−
≥+−

0yy
0yy

32

31

≤−
≤−

The optimization 
problem can be 
formulated as 
minimizing a cost  
under the set of 
constraints 
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A dynamic problem: batch reactor 

A 

B C 

An endothermic  batch reactor operates for 
one hour periods, with a load A according to 
the parallel reactions A → B  and  A → C, 
but only the B product has commercial 
value. The speeds of reaction are given by: 

)/20000exp(10*5
)/10000exp(10

11

6

RTk
RTk

C

B

=

=

Find the temperature profile that maximizes the final 
production of B, if the temperature must always be bellow 
139 ºC 
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Dynamic Optimization (DO) 

A 

B 
C 

)/20000exp(10*5
)/10000exp(10

11

6

RTk
RTk

C

B

=

=

time 

xB 

time 

T 

139)(

0)0(

)0()(

)1(max

0

)(

≤

==

=+−=

tT

xxk
dt

dx

Axxkk
dt

dx

x

BAB
B

AACB
A

BtT

1 h 
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Decision variables parameterization 

A 

B 
C 

)/20000exp(10*5
)/10000exp(10

11

6

RTk
RTk

C

B

=

=

time 

xB 

time 

T 

139

0)0(

)0()(

)1(max

0

≤

==

=+−=

i

BAB
B

AACB
A

BT

T

xxk
dt

dx

Axxkk
dt

dx

x
i

1 h 

T1, T2, T3,….TN 
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Sequential solution using simulation 

Process 

Simulation from 0 to 1h 
provides J(u,x(t)) 

NLP Optimizer 

u J 

w 

u(t) y(t) 

Path constraints on x / penalty 
functions 

utuuytyy
tutxftx

ux
u

≤≤≤≤
==

)(        )(
u(t)g(x(t),y(t)           ))(),(()(

),(Jmin




	Mixed-Integer Programming
	Outline
	Hybrid problems
	Example: Gang of burglars
	Modelling logic with binary variables
	Example: Salesman problem
	Assigning tasks
	Assigning tasks
	Types of mixed-integer problems
	Solution methods
	Branch and Bound (B&B)
	Relaxation
	Número de diapositiva 13
	Branch and Bound (B&B) algorithm
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Integer and binary variables
	Example: Paint factory
	Paint factory
	Paint factory
	Paint factory
	GAMS
	GAMS
	Paint factory
	Blending with discrete batch sizes
	Blending with discrete batch sizes
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Solving MINLP: Branch and bound
	Super-structures
	Turning off continuous variables
	Multiperiod
	Turning constraints on/off
	Switching constraints
	Conditional constraints
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Logic expressions / equations
	Número de diapositiva 49
	Example
	Example
	Acetone production� (Raman & Grossmann, CACHE)
	Acetone production� (Raman & Grossmann, CACHE)
	Acetone production� (Raman & Grossmann, CACHE)
	Acetone production� (Raman & Grossmann, CACHE)
	Acetone production� (Raman & Grossmann, CACHE)
	Acetone production� (Raman & Grossmann, CACHE)
	Disjuntive Programming: Modelling with disjunctions
	Número de diapositiva 59
	Número de diapositiva 60
	Convex Hull formulation
	Translating disjunctions
	Convex Hull formulation
	Solving MINLP: Branch and bound
	Solving MINLP: Cutting Planes
	Outer Approximation   (OA)
	OA  lower bound with MILP
	Non convex optimization
	Convex approximations
	Número de diapositiva 70
	Convex under estimators
	Non negative functions with max
	Piecewise approximation of concave functions
	Piecewise approximation of concave functions
	Convex envelope bilinear terms
	Linear equivalent of products real*integer variables  xy
	Convexification
	Global optimization  
	Pipeline
	A dynamic problem: batch reactor
	Número de diapositiva 81
	Número de diapositiva 82
	Sequential solution using simulation



