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Sequential Quadratic Programming  
SQP

In order to facilitate the description of the ideas behind the SQP 
method, we will examine first a simplified case where only equality 
constraints are considered, and , then, the formulation will be 
extended to the general NLP case.

The SQP method solves the KKT conditions approximating them 
linearly around a value (x, λ) (or solving an equivalent QP problem) 
and iterates in order to improve the estimation, until no noticeable 
improvement is obtained.
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SQP
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We can solve the KKT conditions using Newton’s steps, linearizing 
the equations around an initial estimate xk, λk of the solution:

0)(
)(')(')()( 2

=∆∇+
=∇∆+∇∆+∇≈∇

xxh)h(x
0hλλ,xxλ,xλx,

k

kkkk

kx

kxxxx xLLL

This is a linear systems of equations that can be solved in order 
to find ∆x y ∆λ..

Notice that the Newton-Raphson method equates to zero a 
first order approximation in order to compute ∆x, ∆λ such that 
∇L=0, h = 0
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Notation

)'())('(

)(h)('

x
L...

xx
L

.........
xx
L...

x
L

),(L

)(h

)(h

x
)(h...

x
)(h

.........
x

)(h...
x

)(h

)(
)(h

)(h
)(

x
),(L...

x
),(L

x
),(L),(L

x
)(J...

x
)(J

x
)(J)(J

xx

m

1i
ixix

2
n

2

1n

2

n1

2

2
1

2

2
x

mx

1x

n

m

1

m

n

1

1

1

x

m

1

n21
x

n21
x

xhxhλ

xxhλλx

x

x

xx

xx

xh
x

x
xh

λxλxλxλx

xxxx

∇=∇∇

∇λ=∇





















∂
∂

∂∂
∂

∂∂
∂

∂
∂

=∇

















∇

∇
=





















∂
∂

∂
∂

∂
∂

∂
∂

=∇
















=









∂

∂
∂

∂
∂

∂
=∇









∂
∂

∂
∂

∂
∂

=∇

λ

=
∑





Cesar de Prada ISA-UVA6

SQP
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Nevertheless, it is also possible to find the same solution solving 
the QP problem:

In fact, the Lagrangian Ls of this QP problem is:
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Which are exactly the same set of equations that the previous linear 
ones with σ = ∆λ
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SQP
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SQP another formulation
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SQP another formulation
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SQP general case

The NLP problem can be reformulated using slack variables in the 
following way:
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SQP      Wilson 1963
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SQP
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SQP- (Nash &Sofer Modifications 1996)

When solving each QP subproblem there is no guarantee that ∇x
2L is PD 

and. In addition, it is required to compute the Hessian of all functions. In 
order to avoid this difficulties, the QP subproblem is modified as:
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Substituting ∇x
2L by a PD matrix, Bk that is updated every iteration so 

that it converges to the Hessian using the BFGS technique, in this way, 
only L y ∇xL are required. Also, as before, ∇xL can be replaced by ∇xJ
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SQP- (Nash &Sofer Modifications 1996)

Also, another change in the  SQP is incorporated optimizing the step 
length in every iteration in order to improve the speed of convergence. 
So, instead of:
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SQP Algorithm

1. Bk=I,  xk = x0
2. Solve the QP subproblem obtaining ∆xk and λk
3. Test the optimality conditions (KKT and changes in J and x)
4. Choose the weights ωi and compute αk minimizing J in the direction 

∆xk with exact penalty in h
5. Do xk+1=xk+αk∆xk
6. Compute L(xk), L(xk+1), ∇xL(xk, λk), ∇xL(xk+1, λk), and the new 

estimate Bk+1 using the BFGS method
7. k=k+1, go to 2

The SQP method is efficient with superlinear convergence up to 
several thousand variables. For bigger problems is advisable to use 
SLP.
Codes:  NPSOL, NAG, fmincon, SNOPT
Implemented in GAMS, NAG, Matlab, ….



Large-scale SQP

 Practical problems may involve more than 
105 variables, constraints, equations….

 Two type of problems:
– Few degrees of freedom (10-100)  (n-m)

 RTO, parameter estimation, SS flowsheet optimization,..
– Many degrees of freedom (> 1000)

 Distributed parameters, dynamic optimization, data 
reconciliation, state estimation,…
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Reduced space SQP  (rSQP)

 Recommended for large scale problems with few 
degrees of freedom.
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rSQP moves at every step in two 
separate directions. One fulfils the 
linearized equality constraints, the 
other moves along these 
constraints improving the cost 
respecting the inequalities 

SQP   QP problem to be 
solved at every step
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Let’s define a new basis [Yk, Zk] for ∆x where the last n-m components, Zk are 
perpendicular to the gradient of the equality constraints h and Yk is chosen to 
make [Yk, Zk] non-singular :
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And substituting ∆x into the 
original QP problem, results in a 
new QP in the reduced space 
∆xz:
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Where the constant terms have been dropped from the cost function 
and where Bk is BFGS update of Zk’HK’Zk

After the reduced QP,
∆x can be computed from:



Computing Zk, Yk
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Apply QR decomposition to ∇h(xk)’  (n x m)
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rSQP algorithm
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1- Choose x0, k = 0
2- At every iteration, compute J(xk), h(xk), ∇J(xk), ∇h(xk)
3- Compute Yk, Zk
4- Compute ∆xy from ∇h(xk)Yk ∆xy = - h(xk)
5- Update Bk using BFGS instead of computing Zk’HK’Zk
6- Solve

7- Check stopping criteria. If satisfied, stop
8- Compute multipliers from Yk’∇h(xk)’λk = - Yk’ ∇J(xk)’
9- Calculate ∆x = Yk ∆xy + Zk ∆xz
10- Compute step size α : xk+1= xk +α ∆x 
11– Make k = k + 1,Go to step 2
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Often 
Zk’Hk’Yk∆xy is 
approximated 
by zero

With inequality constraints on x, 
the [Y, Z] decomposition of ∆x is 
applied to the QP problem: 
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Generalized Reduced Gradient GRG

This method uses the equality constraints to eliminate decision variables, 
converting the constraint problem in an unconstraint one. Also, it can be 
seen as an adaptation of the steepest descent method that uses a 
projected gradient on the constraints 

It was developed by Abadie &Carpentier (1969). An improved version due 
to Lasdon (1992) is known as GRG2

Implemented in the Excel solver, CONOPT,..
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GRG   How to include constraints?

In order to facilitate the description of the ideas behind the 
GRG method, we will examine first a simplified case where 
only equality constraints are considered, and , then, the 
formulation will be extended to the general NLP case 

0h(x)

x

=

)(min J
x

In general, as the m equations hi(x)=0 can be non-linear, it won’t be 
possible to work out explicitly the m, xi. The GRG method provides a way to 
obtain an equivalent formulation. When GRG was devloped, there were no 
computing facilities to work out some variables as a function of others from 
h(x) = 0

If it were possible to work out m variables xi from h(x) =0, then, after 
substitution in J(x), the problem would be converted in an unconstraint one in 
the remaining n-m variables, that could be solved e.g. with the steepest 
descend method.
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GRG
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x Be xk a point that satisfy the equality constraints of the NLP 

problem. A linear approximation of h(x) at this point is:
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And we impose the constraint that the linear approximation be zero. 
Then, as h(xk) = 0:
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What is a linear system in x. By simplicity, let’s name xB to the first m 
components of x, (basic variables) and  xN to the remaining ones, so 
that x’ = [x’B| x’N] and let’s try to work out xB as functions of  xN
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GRG
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GRG
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The problem of minimizing J(x) under 
h(x)=0  is equivalent to minimizing 
Jh(xB(xN), xN) with respect to xN and 
without constraints. For this purpose, 
one can use the gradient of Jh with 
respect to xN that is:
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gradient and can be used, for instance, 
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method in relation to xNStopping 

criterion : ε≤
∂
∂

N

hJ
x

so,

Problems if B is 
singular!



Cesar de Prada ISA-UVA27

GRG

This strategy leads to points that improve the values of J(x) independently of 
the linearity of h(x). 

So that, for a σ small enough to guarantee the validity of the linear 
approximation of J, the reduced gradient gives a descent direction of J
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GRG

The main problem of this strategy is associated to the fact that the linear 
approximation of h(x) leads to points that do not satisfy the non-linear 
constraint h(x) = 0. It is not difficult to see that the points of the hyperplane

Do not coincide, in general with h(x) = 0. So, if we use 

x1

x2

h(x)=0
0))(( =−∇ kkx xxxh

xk

As the relation between the change in xN 
and the change in xB is –B-1N, this policy is 
equivalent to use on x:








−
σ−=

−

+ d
NdB

xx
1

kk 1

0))(( =−∇ kkx xxxh

))(()( 1
NkNkkBkB xxxNxBxx −−=− −

to compute xB from xN, in general they will not satisfy h(x) = 0. 
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GRG

The correct strategy is to compute the m components xB at iteration k+1 , 
from the non-linear constraints h(x)=0 so that they are satisfied:

0),( ,1, =σ−+ dxxh kNkB

For this purpose, the Newton’s method can be used:

),(),(

),(
),(

,1,
1

,1,1,

,1,

1
,1,

1,
1

1,

dxxhdxxBx

dxxh
x

dxxh
xx

σ−σ−−=

=σ−







∂

σ−∂
−=

+
−

++

+

−

+
+

+
+

kN
j

kBkN
j

kB
j

kB

kN
j

kB

kB

kN
j

kBj
kB

j
kB

If it does not converge, σ must be reduced and 
the iterations started again. An initial estimate of 
xB,k+1 can be obtained from: 







−
σ−=

−

+ d
NdB

xx
1

kk 1

Then, one should check that J(x) improves in xk+1
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GRG

xN,k
xN,k+1

The optimization is performed 
on x1, x2 using the reduced 
gradient d and then x3 is 
adjusted so that (x1, x2, x3) is on 
the surface defined by 
h(x1,x2,x3)=0 .

This is equivalent to the use of a 
gradient vector projected on the 
constraint surface

xk

h(x1,x2,x3)=0 

x1

x2

x3

-σd

Example: One single 
constraint, x3 basic variable, 
x1, x2 non basic variables

A step σ too large can lead to 
points where no x3 could satisfy 
h(x1,x2,x3)=0 
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GRG Example
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GRG Example

As d = -2 and the non-basic variable is x1, we will optimize Jh(xN)=Jh(x1) 
moving x1 en la dirección –d a certain amount σ, e.g. σ = 0.4, so that the 
new x1(2) would be: x1(1) - σd = 2 – 0.4.(-2) = 2.8

The other components of the new x(2) would be computed so that the 
constraints h1 and h2, are satisfy, by solving:

 
078.2

08.220

3

2
2

2





=−+
=−−

x
x This simple example can be solved analytically, giving, 

(x2= ±3.487, x3 = 4.2  ) but, in general, the Newton’s 
method should be used. A iteration of it would be:

),(),( ,1,
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1k,B NdBxx 1 Initial 
estimate
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GRG Example
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xx
xxx

kBkBkBkB xhxBxx And it will continue until 
the solution (3.487,4.2) 
is reached. 

The new x(2) would be, 
then: (2.8,3.487,4.2) 
and another iteration of 
the GRG algorithm 
could be started.

Nevertheless, before this, an improvement of J should be checked:
5125424)(66.4122.4487.38.24)( 22

)1(
22

)2( =−+−=<=−+−= xx JJ

If there would be no improvement, then σ should be reduced. After several 
iterations the final solution is: (2.5,3.71,4.2) where ∇hJ=0
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GRG - inequalities

0g(x)
0h(x)

x

≤
=

)(min J
x

0ε
0εg(x)

0h(x)

x

≥
=+

=
ε

)(Jmin
,x

And the decision vector is extended with the slack variables:
z = [ x , ε ]      

So that we can consider problems with the format:








≤≤
=

Mzm
0(z)

z

c

)(Jmin
z

The more general case where both equality and inequality constraints are 
present, is approached in a similar way to SQP, by transforming 
inequality into equality equations using additional slack variables : 

The new inequalities generated by the slack 
variables are considered implicitly in the 
steps of the GRG 







ε+

=
)x(g

)x(h
c(z)
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GRG - inequalities

Some aspects to be considered in the implicit treatment of the inequalities 
associated to the slack variables:

1. Select as basic only those that are not very close to the constraints, so 
that the non basic variables can be changed within a certain range

2. Modify the search direction d, so that the constraints associated to the 
slack variables are not violated if xN is moved in the direction –d

3. Check that the constraints associated to the slack variables are not 
violated when the step length σ is adjusted as well as when xB is 
computed in order to satisfy the equality constraints

GRG is an efficient method up to several hundred of constraints and 
decision variables
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Sequential solution using a  
simulator

Cesar de Prada ISA-UVA36

Optimizer of J(x) with respect 
to a subset of n-m variables xb

Numerical solution of h(x) = 0  
to compute the values of the 

remaining m xb
Computation of J(x), g(x)

Values of 
J(x), g(x)

n - m 
variables  xb

It is based on an 
idea similar to 
GRG

x  dim n
h(x) = 0  dim m < n
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Sequential solution using a  
simulator
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xb boundary variables, dim n-m
xd dependent variables dim m
ε Slack variables        dim r



GRG
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
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)(Jmin
z

Given a point of the solution zk of size n, its 
components are partitioned in two groups: 
m dependent variables, zd
n - m independent or boundaries zb
zk = [zb, zd ]

The KKT 
conditions are:




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≥≥
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0)('0)(',)(
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Reduced gradient
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This equation can be used to write the zd components
as functions of zb

Reduced 
gradient



MINOS
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







≤≤
=

Mzm
0(z)

z

c

)(Jmin
x

1. Start from z0
2. Linearize the active constraints in zk :  Dk z =vk
3.  Construct the aumented Lagrangian:

2c'c')(JL (z)(z)z β+λ+=

4. Solve the linearize problem using GRG

Mzm
vzD

c'c')(Jmin

kk

2

z

≤≤
=

β+λ+ (z)(z)z

5. Go to 2, zk+1= z,  k = k +1, iterate until convergence   

The constraints 
c(z)=0 are not 
enforced at 
every step, but 
are added via 
the aumented 
Lagrangian
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Cutting plane  CP

These family of methods follow three main steps:

1  Formulate the problem in the form:

convex  Swith 

min

∈x

xc'
x

2 Find a convex polytope containing S

3 Solve the NLP problem by means of a succession of LP 
problems
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Cutting Plane CP (1)

convex  Twith 

convex        )(fmin

∈z

z
z

1   A problem such as:

0 u- )f(
convex  T

with 

umin

≤
∈
z

z

x

Is equivalent to 
with x = (z , u)’

That has the desired format
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Cutting Plane CP  (2)

S

convex  Swith 

min

∈x

xc'
x

If a polytope Pk containing S is found, the 
problem: minimize c’x on Pk is a LP one.Pk

If the solution of this LP is xk ∈ S, then xk is also 
the solution of the the original NLP

If xk does not belong to S, then, a cutting plane 
separating xk from S, will be added which will 
originate a new polytope Pk+1 closer to S

The problem of minimizing c’x on Pk+1 is 
repeated until a solution, or an adequate 
approximation, is found.

The different CP algorithms differ in the way the 
polytope or the cutting planes are generated

xk

S

Pk+1

xk
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NLP Software

 There are two main types of NLP software :
– Solvers : routines implementing algorithms that can be called from 

a certain environment or programming language, usually as dll’s, 
providing the solution (MINOS, OSL, Matlab Optimization Toolbox, 
TOMLAB, NAG, NPSOL, CONOPT, IMSL,...)

– Modelling environments: They are software environment that 
facilitate the modelling, solution, analysis and management of the 
NLP problem, formulating it in a particular language (GAMS, 
XPRESS-MP, AMPL, AIMSS, Gurobi,...) or format (Excel). They call 
automatically one or several solvers to compute the solution

– Free software: http://www.gams.com/, http://www.gurobi.com/
 Key points when searching for the optimum are the computation 

of the derivatives, the selection of the initial point and the 
existence of local minimums



Software NLP

 SQP:  NPSOL, Fmincon 
 rSQP:  SNOPT, MUSCOD, LSSOL,…
 Reduced Gradient: GRG2, SOLVER, CONOPT
 Reduced Gradient (without rest.): MINOS
 Interior point:           IPOPT, KNITRO, LOQO

Cesar de Prada ISA-UVA45



Comparative study of NLP solvers
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117 test problems
500 - 250 000 variables, 0 – 250 000 constraints
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NLP Software /  Derivatives

Most of these methods require the evaluation of the first derivatives of the 
cost function J and the constraints with respect to x. If they are not supplied 
by the user, the solvers may estimate them using finite differences:

x
xxxx

x
xxx

∆
∆−−∆+

∆
−∆+

2
)()()()( JJJJ

Central differences are more precise but they increase the computation 
time. Usually, relative changes in ∆x are in the order of 10-6 or 10-7

providing good accuracy. Nevertheless, if obtaining J implies the solution of 
systems of equations, simulations, etc, then, ∆x should be increased. As a 
general rule, the precision of the internal computations should be one or 
two orders of magnitude higher than the one required in the optimization.
Alternatively, many modelling environments provide automatic 
differentiation, which increases the accuracy of the results
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Software NLP

Once an optimization problem has been stated, it is convenient to re-
formulate it in such a way that numerical problems are avoided and 
the efficiency in the searching of the solution is increased.

Among possible changes we can mention:

Scaling the decision variables

Changes of variables to avoid computations out of range: log(x), x½, 
…

Changes of variables to avoid non differentiability, discontinuities,..

Changes of variables to improve the convexity of the problem



Formulate the problem avoiding 
potential numerical problems
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Formulate the problem avoiding 
potential numerical problems
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Min [zx – 3zy]
s.t. xz + y - zy = 2
4x – 5zy + zx = 9
0 ≤ z ≤ 1
Non-convex NLP 
problem

Exploit problem structure
Min zx – 3zy
0 ≤ z ≤ 1

Min [zx – 3zy]
s.t. xz + y - zy = 2
4x – 5zy + zx = 9 It is LP for 

a fix z

LP 
in 
x,y

LP in 
z

z x,y

Add constraints in 
order to avoid non-
desirable solutions of 
equality constraints

h(x) =0                   h(x) = 0
a ≤ x ≤ b
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Convexification

)v,v(Jmin)x,x(Jmin
eeexx
exex

xx)x,x(J

21v,v21x,x

vvvv
21

v
2

v
1

2121

2121

2121

21

=
==

==

=

+

Non convex in x

Change of variables

Convex function in v
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Software NLP

One important problem in NLP is to know if the optimum proposed by the 
algorithm is a local or global one. 

In general, except if the problem is a convex one, we cannot guarantee that 
the solution is a global one. In order to improve the chances of obtaining a 
global solution, three kind of approaches are usually used:

Multistart: Repeat the problem starting with different initial points spread 
over the feasible set. If all of them finish in the same point, this gives a 
certain confidence in the solution found. 

Convexification: Reformulate the problem so that a new equivalent 
convex problem is found and then solve this problem.

Global optimization: Choose a global optimization algorithm. Deterministic 
global methods, such as BARON, are very slow while evolutionary 
algorithms do not provide real guarantee that the global optimum is found.
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NLP Software

Finally, another important point to consider when solving the NLP problem is 
the tuning of the parameters of the algorithms, which appear, either in the 
evaluation of the optimality conditions, or in the intermediate steps of the 
algorithm, which themselves are LP, QP, steepest descend, etc. problems.

3
0

1

)(
)()(

ε≤
+ε

−+

k

kk

J
JJ
x

xx
2

0

1 ε≤
+ε
−+

k

kk

x
xx

ikijkj hg ε≤ε≤ )()( xx

Maximum number of iterations,….

Changes in the function J 
or the value of x

Tolerances in the constraints
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Minimum distance

x1

x2 Find the closest point to the origin of 
the curve on the first quadrant:

8565 2
221

2
1 =++ xxxx

2
2

2
1min xx +

x

under:

0x,0x
8x5xx6x5

21

2
221

2
1

≥≥
=++

NLP Problem:
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Aim: To generate 50 MW with minimum 
fuel oil consumption

Boiler
1 ∼

2
22222

2
21212

2
12121

2
11111

x0008.0x23.073.0g
x0009.0x2.08.0f

x0013.0x16.057.1g
x0014.0x15.046.1f

++=

++=

++=

++=

Boiler 
2 ∼

Fuel oil

Fuel oil

gas

gas

f1
g1

f2
g2

They can work at the same time with 
fuel oil and gas (adding powers)

xij power (MW) generated in alternator i 
with fuel j

Fuel consumption Kg/min to 
generate xij MW in each 
alternator

x1

x2

Working range:  Alternator 1 
between 18 and 30 MW      
Alternator 2 between 14 and 25 MW 
Total flow of gas less than 10 Kg/min
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2
2121

2
1111,,,21,,,

0009.02.00014.015.026.2minmin
2221121122211211

xxxxff
xxxxxxxx

++++=+

Power constraints:

2514
3018
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2221

1211

22211211
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xxxx

Availability constraints













≥++=

≥++=

≥++=

≥++=

≤++++=+

00009.02.08.0
00014.015.046.1
00008.023.073.0

00013.016.057.1

100008.023.00013.016.08.1

2
21212

2
11111

2
22222

2
12121

2
2222

2
121221

xxf
xxf
xxg
xxg

xxxxgg

,0,0,0,0 22211211 ≥≥≥≥ xxxx

They are redundant, as they 
are always positive for xij≥0

Excel
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Chemical equilibrium

A mixture of 10 chemical species (H, H2, H2O, N, N2, NH, NO, 
O, O2, OH) is in equilibrium at T=298 ºK and P = 750 mmHg. It 
is known that the species are made out only of hydrogen, 
nitrogen and oxygen, and the mixture behaves as an ideal gas. 

Which is the composition of the mixture if we know that there 
are the following amounts of elements: 2 moles of H, 1 mol of N 
and one mol of O?

H2, N,
O2,…

T = 298 ºK 

P = 750 mmHg
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Chemical equilibrium

j Moles 
of j

wj

H x1 -10.021
H2 x2 -21.096
H2O x3 -37.986
N x4 -9.846
N2 x5 -28.653
NH x6 -18.918
NO x7 -28.032
O x8 -14.640
O2 x9 -30.594
OH x10 -26.111

At equilibrium, the Gibbs energy of the 
system must be minimal

∑
=

=

+=
10

1i
ijj

jjj

xxy

)]Pyln(w[RTGFree energy per mol of 
component j:

yj molar fraction of 
component j in the mixture

Find the composition that minimizes the total 
Gibbs energy of the mixture:

∑
=

=
10

1j
jjGxG
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Chemical equilibrium

∑ ∑∑
= ==







+==

10

1j

10

1i
ijjj

10

1j
jj ]xPxlnw[xRTGxGmin

x

Mass conservation of element i

0x

1z,1z,2zxaz

j

321

10

1j
jiji

≥

==== ∑
=

aij moles of element i in one mol of specie j

H H2 H2O N N2 NH NO O O2 OH

a1j / H 1 2 2 0 0 1 0 0 0 1

a2j / N 0 0 0 1 2 1 1 0 0 0

a3j / O 0 0 1 0 0 0 1 1 2 1

NLP problem with 
linear constraints
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sets c compounds / H, H2, H2O, N, N2, NH, NO, O, O2, OH /
i atoms     / H  hydrogen, N  nitrogen, O  oxygen /

table a(i,c) atoms per compound
H  H2  H2O  N  N2  NH  NO  O  O2  OH

H    1   2    2          1              1
N                1   2   1   1
O             1              1  1   2   1

parameters mix(i) number of moles in the mixture / h=2, n=1, o=1 /
gibbs(c) Gibbs free energy coef at 3500 k  and 750 psi /

H  -10.021,  H2  -21.096,  H2O -37.986,  N   -9.846, N2 -28.653
NH -18.918, NO -28.032,  O  -14.640,   o2 -30.594, OH -26.11 /

gplus(c) Gibbs free energy plus pressure ;
gplus(c) = gibbs(c) + log(750*.07031); display gplus;

GAMS



Cesar de Prada ISA-UVA61

GAMS

variables x(c) number of moles in the mixture
xb total number of moles in the mixture
energy total free energy of the mixture

positive variables x, xb;
equations cdef(i) compound definition 

edef energy definition 
xdef total number of moles definition ;

cdef(i)..  sum(c, a(i,c)*x(c)) =e= mix(i);
xdef..     xb =e= sum(c, x(c));
edef..     energy =e= sum(c, x(c)*(gplus(c) + log(x(c)/xb)));
x.lo(c) = .001; xb.lo = .01;

model mixer chemical mix for N2H4+O2 / all /;
solve mixer minimizing energy using nlp;
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GAMS

---- VAR x  number of mols in mixture

LOWER     LEVEL     UPPER    MARGINAL

H       0.001     0.040     +INF       EPS
H2      0.001     0.146     +INF       .
H2O    0.001     0.785     +INF       EPS
N       0.001     0.001     +INF       EPS
N2      0.001     0.485     +INF       .
NH      0.001     0.001     +INF      0.371
NO      0.001     0.027     +INF       .
O       0.001     0.018     +INF       EPS
O2      0.001     0.037     +INF       EPS
OH      0.001     0.096     +INF       EPS

** Feasible solution. 
Value of objective =   
-47.3618693341 
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Minimum surface heat exchangers

1 2 3

Heat 
exchanger

U (w/m2ºK) Area 
(m2)

1 681 A1

2 454 A2

3 227 A3
KhKcalcq p º/50000=ρ

35ºC

150ºC 200ºC 300ºC

260ºCT1 T2

T3 T4 T5

Size the heat exchangers 
so that the especifications 
can be satisfied and its 
total surface is minimum
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Minimum surface heat exchangers

1 2 3
35ºC

150ºC 200ºC 300ºC

260ºCT1 T2

T3 T4 T5
Energy balance:
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Placement

Three cylindrical storage tanks must be placed 
in a site (first quadrant) and enclosed with a 
wall, which is the best placement in order to 
minimize the wall length?1

2

3

Tank Radius r (m)

1 5

2 15

3 10

(xi,yi) coordinates of the cylinder I centre

A, B sizes of the wall length and width

A

B

x

y
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Placement

1

2

3

A

B

( )

0,03,2,1

3,2
3,1
2,1)()(

)(2min
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






==
==
==










≤++−

≤++−

+≥−+−

+

BAiryrx

ji
ji
ji

Brryy

Arrxx

rryyxx

BA

iiii

jiji

jiji

jijiji

BAyx ii

y

x

Multiplicity of solutions due to the problem 
symmetry. Discontinuities in the derivatives

(xi,yi) coordinates of the cylinder centre

A, B sizes of the wall length and width

Tank Radius r (m)

1 5

2 15

3 10
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Placement: alternative

1

2

3

A2

B1

y

x

Tank 3 is placed at the origen, so that 
there are only two tanks to place

( )

0,0,0,0

3,2,1
3.1,2
3,2,1
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1
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Here all derivatives 
are continuous

A1

B2
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Three stages compressor

The power 
consumed by a 
reversible adiabatic 
compressor which 
input temperature is 
T, is given by:

gases constante

1
1

1

==γ














−








−γ
γ

=
γ
−γ

R
c
c

P
PqRTW

v

p

ent

sal
q mol/h   T ºK  γ = 4/3

If the gas enters at 1bar and must be 
compressed up to 64 bars maintaining q 
and T constants, which must be the 
intermediate working pressures in order to 
consume the minimum energy?

M

q
P0

T

P1 P2
P3

T T T



Cesar de Prada ISA-UVA69

Three stages compressor

M

The total power 
consumed will be the 
sum of the power 
consumed by each 
stage:
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Octane number in mixtures

In the blending operation of a refinery, several products with different 
properties, among them RON (Research Octane Number), are 
mixed to obtain a certain amont of commercial gasoline. Some of 
the properties of the mixture can be computed as a linear 
combination of the corresponding property of the different 
components. Nevertheless, this is not the case with some others  
such as RON.

The blending problem consists of 
determining the flows of the components 
with minimum cost that guarantees an 
octane number (and other properties) above 
a minimum, respecting component’s 
availability and other possible constraints

%

Octane 
number
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Octane number in mixtures

Variables:

xi flow of compound i

pi  price of component i

F desired total flow of the mixture

zi octane number of component i

zm octane number of the mixture

φ non-linear function 

θ Minimum RON in the mixture

Mi maximum availability of component i

θ≥
≤





φ=

=

∑

∑

∑

m

ii

i
i

i
m

i
i

i
iix

z
Mx

z
F
xz

xF

xpmin
i

NLP problem



RON in mixtures
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The previous formulation is 
non-linear. In order to 
simplify the solution, the 
Blending Index method can 
be applied, which transform 
the problem in a LP one. It 
consist of a change of 
variable wi = Bi(zi), specific 
for each property i, such 
that it verifies:

)(Bw
Mx

wxFw

xF

xpmin

m

ii

i
iim

i
i

i
iiwx m,i

θ≥
≤

=

=

∑

∑

∑

∑∑ ===
i

ii
i

iiimm wx)z(Bx)z(FBFw

LP 
problem

Afterwords, the value of zm
can be recovered from   
wm = B(zm)
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Data reconciliation (Rollins 93)

A B C D
1 2 3 5

4

6

7

In the process represented in the figure the flows of the different streams 
(1 to 7) have been measured using transmitters with different accuracies, 
as in adjoint table

Stream 1 2 3 4 5 6 7
Value 49.5 81.5 85.3 10.1 72.9 25.7 50.7
Variance 1.5625 4.5156 4.5156 0.0625 3.5156 0.3906 0.3906

Which is the best coherent estimation of the real value of the flows?
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Data reconciliation

A B C D
1 2 3 5

4

6

7

Notice that the measurements are not coherent, e.g. a balance around the 
C unit gives: F3≠ F4+ F5 83.5 ≠ 10.1 +  72.9 = 83, due to errors in the 
transmitters. One wish to correct them as less as possible according to its 
respective accuracy, so that the mass balances are satisfied.

Stream 1 2 3 4 5 6 7
Value 49.5 81.5 85.3 10.1 72.9 25.7 50.7
Variance 1.5625 4.5156 4.5156 0.0625 3.5156 0.3906 0.3906
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Data reconciliation

Variables

Fim measured flow in stream i

Fi estimated flow in stream i 

Aim

∑
=








 −7

1

2
1

i im

imi

i
F F

FF
v

min
i

Constraints: The mass 
balances around each node 
must be fulfilled

0
765543

322641

≥
+=+=

==++

iF
FFFFFF

FFFFFF
The relative corrections are made 
proportional to the inverse of the 
variance of each instrument

Some errors (losses, 
malfunctions, etc.) can be 
detected according to the 
size of the corrections
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Chemical reactor

Reactor

TT AT

Coolant

Products: A and B

Raw material
product A

A → B

Specifications: Ti, q, ci, Tci

T

Ti, q, ci

Tci
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0Q)TT(cF ccipjj =+−ρ

0Vkcqcqc AAi =−−
0Vkcqc AB =+−

RT
E

ek −
β=

)TT(UAQ c−=

0QHVkcTcqTcq Apip =−+ρ−ρ

Conservation of A and B

conversionx      )x1(cc iA −=

Energy conservation

TT AT

Coolant

Products: A and B

Row material
product A

A → B

T Ti, q, ciTci

DLA

LDV

π

π

=

=
4

2Reactor
Geometry:
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Reactor design

0ceVqcqc A
RT

E

Ai =β−− −

0ceVqc A
RT

E

B =β+− −

conversión    x  )x1(cc iA −=

0)TT(UA)TT(cF cccipjj =−+−ρ

0)TT(UAHVkcTcqTcq cApip =−−+ρ−ρ

Total variables: 14

q, ci, cA, cB, V, T, x, Ti, A, Tc, 
F, Tci, D, L

Equations: 7

Specifications: 4

q, ci, Ti, Tci

Degrees of freedom: 3  x, T, Lx, T and L can be selected 
within a range

DLA

LDV

π

π

=

=
4

2

CB redundant
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Manual Design from x,T,L
Given x, T and L :

Compute cA :     c = (1- x) ci

Compute the size V:              V = qx / (k(1- x))

Compute sizes D, A and the building cost

Compute Q            Q = -(ci - c)qH - cpq(T - Ti)

Compute Tc Tc = T - Q / (U A)

Compute F            F = Q / (ρj cpj (Tc - Tci )

Compute operation costs

If  the design is not satisfactory, then, specify another x, T 
or L and  start again



Cesar de Prada ISA-UVA80

Degrees of freedom and 
optimization

 The problem can be formulated also as an 
optimization one where the values of the 
variables are selected so that, verifying the 
model equations, a set of constraints are 
satisfied and a certain cost function is 
minimized

...
10TT

3D/L10V
7c0c

LLL
xxx
TTT

c

BA

maxmin

maxmin

maxmin

≥−
≤≤≥

≥≥

≤≤

≤≤

≤≤

min   construction cost =
=  1916.9 D1.066 L0.802 €

Notice that if the degrees of freedom are zero, 
then there is only a single solution and no room 
for optimization is left.
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Two approaches  First one: all 
variables are decision variables

Max Benefit = max   - 1916.9 D1.066 L0.802 + (qcBpriceB

x, T, L,D,F,……. - qcAipriceAi - F priceF )*time

under: 0ceVqcqc A
RT

E

Ai =β−− −

0ceVqc A
RT

E

B =β+− −

)x1(cc iA −=

0)TT(UA)TT(cF cccipjj =−+−ρ

0)TT(UAHVkcTcqTcq cApip =−−+ρ−ρ

...TT10
.4D/L1

0V
0c0c

LLL
xxx
TTT

r

BA

maxmin

maxmin

maxmin

≤−≤
≤≤

≥
≥≥

≤≤

≤≤

≤≤

DLA

LDV

π
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=
4

2
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Second approach: only the degrees of 
freedom are decision variables 

Max Benefit = max   - 1916.9 D1.066 L0.802 + (qcBpriceB -
x, T, L - qcAipriceAi - F priceF )*time

0ceVqcqc A
RT

E

Ai =β−− −

0ceVqc A
RT

E

B =β+− −

)x1(cc iA −=

0)TT(UA)TT(cF cccipjj =−+−ρ

0)TT(UAHVkcTcqTcq cApip =−−+ρ−ρ

DLA

LDV

π

π

=

=
4

2

Use only the degrees of 
freedom  x, T and  L  as 
decision variables and 
compute the other variables 
by means of the equality 
constraints of the model. 

A simulator is needed, there 
are no equality constraints 
and the inequality ones are 
evaluated in the simulator
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Optimal design

Max Benefit = max   - 3 * 1916.9 D1.066 L0.802 + (qcBpriceB -
x, T, L - qcAipriceAi - F priceF )*time

under: 0ceVqcqc A
RT

E

Ai =β−− −

0ceVqc A
RT

E

B =β+− −

)x1(cc iA −=

0)TT(UA)TT(cF cccipjj =−+−ρ

0)TT(UAHVkcTcqTcq cApip =−−+ρ−ρ
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Second approach: only the degrees of 
freedom are decision variables

NLP software

0ceVqcqc A
RT

E

Ai =β−− −

0ceVqc A
RT

E

B =β+− −

)x1(cc iA −=

0)TT(UA)TT(cF cccipjj =−+−ρ

0)TT(UAHVkcTcqTcq cApip =−−+ρ−ρ

DLA

LDV

π

π

=

=
4

2

Constraints evaluation
Cost 

Function
evaluation

J =……

x, T, L J, g

...TT10
.4D/L1

0V
0c0c

LLL
xxx
TTT

r

BA

maxmin

maxmin

maxmin

≤−≤
≤≤

≥
≥≥

≤≤
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≤≤

Simulator
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Example Specifications:

q = 2.832 m3/h                                      
k = 0.5 h-1

H = 69.710,5 kJ/kmol       
Ti = Tri = 21.11 ºC            
ρ = 800.8 Kg/m3

ci=15 kmol/m3

U = 6129 kJ/h m2·K
cp = 0,968 kJ/kg·K
cpc = 1,291 kJ/kg·K
ρj = 1041.1 Kg/m3                   

jacket width  0.1 m.       
1<  L / D < 3    Fr < 90        
10 < T - Tr < 30               
0.8 < x < 0.95

Ti, q, ci

Tci T

Cost = 575.7 D1.066 L0.802

Solution: T= 65,  D = L = 3.03

Tr = 51.5  Fr = 58.4  x = 0.8 

J = 4565.04 €



Reduced space SQP  (rSQP)

 Recommended for large scale problems with few 
degrees of freedom.
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rSQP moves at every step in two separate directions. One fulfils 
the linearized equality constraints, the other moves along these 
constraints improving the cost respecting the inequalities 

QP problem to be 
solved at every step
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rSQP      KKT conditions
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Let’s define a new basis [Yk, Zk] for ∆x where the last n-m components, Zk are 
perpendicular to the gradient of the equality constraints h and Yk is chosen to 
make [Yk, Zk] non-singular :
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rSQP
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rSQP
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λk can be computed from first row with full expression or 
approximating the terms Yk’Hk’Yk and Yk’Hk’Zk by zero:: 

Square, allows computing ∆xY. This term 
brings xk to the linearized constraint h

Will allow computing ∆xz
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βI terms in the diagonal

)'(JY)'x(Y kx
'
kkkx

'
k xλh ∇−=∇

zkyk ZY xxx ∆+∆=∆Then,
















∇
∇

−=















∆
∆

















∇

∇

)(
)'(JZ
)'(JY

00Y)(
0ZZYZ

)'(YZYYY

k

kx
'
k

kx
'
k

k

z

y

kkx

k
'
k

'
kk

'
k

'
k

kx
'
kk

'
k

'
kk

'
k

'
k

xh
x
x

λ
x
x

xh
HH

xhHH


	Non Linear Programming NLP
	Outline
	Sequential Quadratic Programming  SQP
	SQP
	                                            Notation
	SQP
	SQP
	SQP another formulation
	SQP another formulation
	Número de diapositiva 10
	Número de diapositiva 11
	SQP
	SQP- (Nash &Sofer Modifications 1996)
	SQP- (Nash &Sofer Modifications 1996)
	SQP Algorithm
	Large-scale SQP
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Computing Zk, Yk
	rSQP algorithm
	Generalized Reduced Gradient GRG
	GRG   How to include constraints?
	GRG
	GRG
	GRG
	GRG
	GRG
	GRG
	GRG
	GRG Example
	GRG Example
	GRG Example
	GRG - inequalities
	GRG - inequalities
	Número de diapositiva 36
	Número de diapositiva 37
	GRG
	Reduced gradient
	MINOS
	Cutting plane  CP
	Cutting Plane CP (1)
	Cutting Plane CP  (2)
	NLP Software
	Software NLP
	Comparative study of NLP solvers
	NLP Software /  Derivatives
	Software NLP
	Formulate the problem avoiding potential numerical problems
	Formulate the problem avoiding potential numerical problems
	Número de diapositiva 51
	Software NLP
	NLP Software
	Minimum distance
	Aim: To generate 50 MW with minimum fuel oil consumption
	Número de diapositiva 56
	Chemical equilibrium
	Chemical equilibrium
	Chemical equilibrium
	GAMS
	GAMS
	GAMS
	Minimum surface heat exchangers
	Minimum surface heat exchangers
	Placement
	Número de diapositiva 66
	Placement: alternative
	Número de diapositiva 68
	Número de diapositiva 69
	Octane number in mixtures
	Octane number in mixtures
	RON in mixtures
	Data reconciliation (Rollins 93)
	Número de diapositiva 74
	Data reconciliation
	Número de diapositiva 76
	Número de diapositiva 77
	Reactor design
	Manual Design from x,T,L
	Número de diapositiva 80
	Número de diapositiva 81
	Second approach: only the degrees of freedom are decision variables 
	Optimal design
	Second approach: only the degrees of freedom are decision variables
	Número de diapositiva 85
	Reduced space SQP  (rSQP)
	rSQP      KKT conditions
	rSQP
	rSQP

