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Sequential Quadratic Programming
SQP

In order to facilitate the description of the ideas behind the SQP
method, we will examine first a simplified case where only equality
constraints are considered, and , then, the formulation will be
extended to the general NLP case.

The SQP method solves the KKT conditions approximating them
linearly around a value (x, A) (or solving an equivalent QP problem)
and iterates in order to improve the estimation, until no noticeable
improvement is obtained.

min J (x)}
X L(X,A) =J(X)+A'h(X)
h(x)=0
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SQP
<

min J (x)}
) L(X,2) = J(X) +A'h(x)
h(x)=0 |
KKT Conditions : {VXL(X,X) =V, () +2V,h() =0
h(x)=0

We can solve the KKT conditions using Newton'’s steps, linearizing
the equations around an initial estimate x,, A, of the solution:

V L(X,A) =V L(X,, A )+ AX'ViL(X, , A )+ ALV h(x ) =0

h(Xk) + Vxh(Xk )AX =0 Notice that the Newton-Raphson method equates to zero a
first order approximation in order to compute Ax, AA such that
VL=0,h=0

This is a linear systems of equations that can be solved in order
to find Ax y Ah.. Cesar de Prada ISA-UVA



aXl axz aXn

VXJ‘X):[(N(X) PR W)} Notation

VXL(X,X)=FL(X’M OL(x.) 8L(x,x)}
aX1 axz aXn
. oh) ]
n,(x) ox, 00X, V,h (%)
h(x)=| : V.h(x)=| .. e . |= 5
hm(X) M M Vth(X)
) ) 5X1 @Xn - -
oL oL
oxZ 7 ox.0x, , o
Vil =) e XVXh(X)—i;xivxhi(x)
oL oL V, (A'V, h(x)) =V, h(x)'
OX 0%, 8xf]
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SQP
<

Nevertheless, it is also possible to find the same solution solving
the QP problem:

min Vv, L(X,, & JAX + %Ax'ViL(xk A, )AX

h(x,)+V. h(x,)Ax=0
In fact, the Lagrangian L, of this QP problem is:
L. (AX,0) =V L(X,, A, )AX+ %Ax'ViL(xk A )AX+ o' (h(X, ) +V, h(X,)AX)

And its corresponding KKT conditions are:
V.L (AX,6) =V L(X &)+ AX'VIL(X A, ) +6'V h(x,)=0
h(x,)+V h(x,)Ax=0
Which are exactly the same set of equations that the previous linear
ones with ¢ = Al Cesar de Prada ISA-UVA



SQP
<

As the linearized problem V. L(X,A) =V J(X)+ invxhi (X)=0
IS only an approximation, i
the SQP method iterates, h(x)=0

starting again in the point:

] 1
min V. L(X,, A, ) AX+=AX'VZL(X, , L, )AX
Xk+1:Xk+AX Ax X ( k k) 2 X ( k k)

)\‘k+1 :;"k + AL h(Xk)+th(Xk)AX:O
VIL(X A ) = V2EI(X, ) + Z}Lkvihi (X,)

And solving the associated QP problems until there is no
sensible changes in x and J
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SQP another formulation
.. ]

As  V,L(xA) =V, J(X)+ > AV, hi(x) Substituting in:

min v, L(x, ,xk)'Ax+;Ax'ViL(xk /A )AX

h(x)+V,h(x)Ax=0 g ()
Min V3¢, ) AX + 1, 'V, h, (X, JAX + ;Ax'viL(xk,kk)Ax _

1 and using (*)
=min V,J(x, )’ AX = &, 'h(x,) +9Ax'V§L(xk,xk)Ax

Which is
equivalent to:

min VXJ(xk)'Ax+;Ax'viL(xk,kk)Ax cte.

h(x,)+V, h(x,)Ax=0
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SQP another formulation
.. ]

. . 1.,
min V., J(X,) AX+2AX ViL(X,, hy )AX In this case, the KKT

diti :
h(x,)+V, h(x,)Ax=0 conditions are

V. I(X )+ AX'VIL(X, , A ) +6'V. h(x,)=0

Comparing with the Newton-
h(x,)+V. h(x,)Ax=0

step equations:
V. L(X A )+ AX'VIL(X, , A, )+ ALV h(x,)=0
h(x,)+V. h(x,)Ax=0
V. IX)+A,'V. h(x ) +AX'VIL(X, L, ) +AL'V h(x,)=0
V. I(X, )+ AX'VIL(X, A ) + (A +AL)V (X, ) =0

And now o = A + AL, so that, with this X1 = X, + AX
formulation, the updating is: A, =G Cesatde Prada ISA-UVA
;




SQP general case
<

The NLP problem can be reformulated using slack variables in the
following way:

min J(x) min J(X)

h)=0 ==  NX)=0

g(X)SO g(X)+8=O
>0

And the decision vector is extended with the slack variables:
z=[x,e] mzan(z)
So that we can consider problems with the format: ¢(2)=0 C(Z){
m<z<M

h(x)
g(x) + s}
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SQP  wilson 1963

mxin J(X)
h(xX)=0 ¢+ L(XA,un)=JX)+2hX)+u'(M-X)+n"(x—M)
m<x<M VLR um) = V,000 + DAV, () — p'+n'=0

KKT conditions: h(x)=0, m<x<M p'(mMm-x)=0 n'(M-x)=0
u=>0, n=0

In order to solve them, a linearization around an initial estimate
X, Mo oM WIll lead to:

V, L(X, % 1,mM) = V, L (X, M by M) + AX VL (X, B, by, M) + ALV, (X, ) — Ap'+An'= 0
h(x,)+V,h(x,)Ax=0, m<x, +Ax<M,

pe (M=X, ) = AX+ (M=%, ) Ap=0 p, +Ap=0

M (X —M)+n AX+ (X, ~M)'An=0 n,+An=0 Cesar de Prada ISA-UVA




SQP
<

In this case, an equivalent QP problem corresponds to:
. 1
nlm VXL(Xk’)"k’“k’nk)AX_l'EAX'V)Z(L(Xk’)"k’p‘k'nk)AX

h(x,)+V,h(x,)Ax=0, m<x, +Ax<M

As can be verified, computing its KKT conditions from its Lagrangian L

L. (AX, AL, Ap, An) =
=V, L(X:h s by, My )AX +%AX'V§L(ka;‘k My My )JAX +
+ AN (h(X, ) +V h(x, ) AX) — Ap'(m — X, —AX) +An'(X, + AX—M) =0
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SQP- (Nash &Sofer Modifications 1996)
S

When solving each QP subproblem there is no guarantee that V2L is PD
and. In addition, it is required to compute the Hessian of all functions. In
order to avoid this difficulties, the QP subproblem is modified as:

'Tlin Vxl—(xk’;‘k’“k’nk)AX'i'%AX'V)Z(L(Xk’;‘k’Mk’nk)AX
h(x,)+V,h(X,)Ax=0, m<x, +Ax<M

Substituting V,°L by a PD matrix, B, that is updated every iteration so
that it converges to the Hessian using the BFGS technique, in this way,
only Ly V,L are required. Also, as before, V,L can be replaced by V.J

rrlin VXJ(xk)Ax+%Ax'BkAx

h(x,)+V, h(X,)AX=0, m<x, +Ax<M
Cesar de Prada ISA-UVA



SQP- (Nash &Sofer Modifications 1996)
S

Also, another change in the SQP is incorporated optimizing the step
length in every iteration in order to improve the speed of convergence.
So, instead of:

X, =X +AX  The % =X +0aAX
correction
;‘k+1 =0 IS: ;\‘k+1 =0

Where the step length o is computed in order to minimize J in the
direction Ax with an exact penalty added:

min J((X, + aAX)) + D a;|h; (X, + 0AX)
where o, are the penalty weights
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SQP Algorithm

W

o o

B.=l, X =Xg
Solve the QP subproblem obtaining Ax, and A,
Test the optimality conditions (KKT and changes in J and x)

Choose the weights o, and compute o, minimizing J in the direction
AX, with exact penalty in h

Do X, =X, +oy AX,

Compute L(Xy), L(Xy.1), Lx, O Vo L(X.1, ), and the new
estimate B,,, using the B ethod

k=k+1, goto 2

The SQP method is efficient with superlinear convergence up to
several thousand variables. For bigger problems is advisable to use
SLP.

Codes: NPSOL, NAG, fmincon, SNOPT
Implemented in GAMS, NAG, Matlab, ....
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Large-scale SQP
-

e Practical problems may involve more than
10° variables, constraints, equations....

e Two type of problems:
- Few degrees of freedom (10-100) (n-m)
e RTO, parameter estimation, SS flowsheet optimization,..

- Many degrees of freedom (> 1000)

e Distributed parameters, dynamic optimization, data
reconciliation, state estimation,...

Cesar de Prada ISA-UVA



Reduced space SQP (rSQP)

e Recommended for large scale problems with few

degrees of freedom. SQP QP problem to be
solved at every step

Hy IViL(Xk,lek,nk)
h(x,)+V,h(Xx,)AXx=0, m<x, +Ax<M

rrlin V. J(X, )AX + %Ax' H, AX

rSQP moves at every step in two

separate directions. One fulfils the X,
linearized equality constraints, the | ..~
other moves along these AXy\
constraints improving the cost
respecting the inequalities

Codes: SNOPT, MUSCOD-II,.. Cesar de Prada ISA-UVA



Reduced space SQP (rSQP)

Let's define a new basis [Y,, Z,] for AXx where the last n-m components, Z, are
perpendicular to the gradient of the equality constraints h and Y, is chosen to
make [Y,, Z,] non-singular :

Vxh(xk)zk — O i
n size of x
AX =Y AX, +Z, AX, m size of h

Y. (nxm), Z (nx(n—m))
If Ax has to fulfill the linearized constraints: h(x, )+ V, h(x,)Ax =0
V. h(x, )Y AX, +Z,AX,) =-h(X,)
V. h(x,)Y.Ax, =-h(x,)
Axy =V h(x, )Y, ] h(x,)

-1
AX = _Yk [Vxh(xk)Yk] h(xk) + ZkAXZ Cesar de Prada ISA-UVA



Reduced space SQP (rSQP)

And substituting Ax into the min V. J(X )AX+1AX'H AX
original QP problem, resultsina  ax  * « 2 “

new QP in the reduced space h(x,)+V h(x)Ax=0, m<x, +Ax<M
AX,:

.1 Co .
min EAXZ'BKAXZ +AX, (£ H, Y, AX, +Z,V,I(X,)")
XZ
m <X, + Y, AX, +Z AX, <M
Where the constant terms have been dropped from the cost function
and where B, is BFGS update of Z,'H,'Z,

After the reduced QP,

Ax ==Y, [V h(x )Y, ['h(x, )+ ZAx
AX can be computed from: V()Y hx) + Z,ax,
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Computing Z,, Y,
e«

Apply QR decomposition to Vh(x,)’ (n x m)

R R
V. h(x,)'= Q{O} =[vY, Zk]{o} With Q unitary matrix

Y'Y, =l Z'Z.=1__ Z.'Y,=0

Z,'V.h(x,)=2Z]Y, zk]{ﬂ =[0 |]{ﬂ =0

h ) el
Vx (Xk)zk 0 Vxh(xk)I:[Kk Lk] Zk:|: Kk I—k:| Yk:|:|:|

Or other methods: K(m x m)

. - KL,
as V,h(x,)Z,=[K, L] =0
| Cesar de Prada ISA-UVA



With inequality constraints on X,
the [Y, Z] decomposition of Ax is
applied to the QP problem:

rSQP algorithm
S

1- Choose x, k=0
2- At every iteration, compute J(x,), h(x,), VI(x,), Vh(x,)
3- Compute Y,, Z,
4- Compute Ax, from Vh(x,)Y, AX, = - h(x,)
5- Update B, using BFGS instead of computing Z,'H,'Z,
6- Solve 1 o | Often |
min EAXZ'BKAXZ +AX, (£, H Y, Ax, +Z,V (X)) Z H(Y\AX, i
‘ approximated
m < X+ YkAXy + ZkAXz <M by Zero
7- Check stopping criteria. If satisfied, stop
8- Compute multipliers from Y, 'Vh(x,)'A, = - Y\’ VI(X)’
9- Calculate Ax =Y\, AX, + Z, AX,
10- Compute step size o : X=X, to AX
11- Make k =k + 1,Go to step 2
Cesar de Prada ISA-UVA



Generalized Reduced Gradient GRG

This method uses the equality constraints to eliminate decision variables,
converting the constraint problem in an unconstraint one. Also, it can be
seen as an adaptation of the steepest descent method that uses a
projected gradient on the constraints

It was developed by Abadie &Carpentier (1969). An improved version due
to Lasdon (1992) is known as GRG2

Implemented in the Excel solver, CONOPT,.. 83 (X, )
X1 = X — Oy ox =

Steepest v
descend o X = 0V d (%)
method: rr;m J(X, =0, V,J(X,))

pararsi |V, J(x,)| <€
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GRG How to include constraints?

min J(X) In order to facilitate the description of the ideas behind the
X GRG method, we will examine first a simplified case where
h(x)=0 only equality constraints are considered, and , then, the

formulation will be extended to the general NLP case

If it were possible to work out m variables x; from h(x) =0, then, after
substitution in J(x), the problem would be converted in an unconstraint one in
the remaining n-m variables, that could be solved e.g. with the steepest

descend method.

In general, as the m equations h,(x)=0 can be non-linear, it won’t be

possible to work out explicitly the m, x;. The GRG method provides a way to
obtain an equivalent formulation. When GRG was devloped, there were no
computing facilities to work out some variables as a function of others from

h(X) =0 Cesar de Prada ISA-UVA



GRG
<

mxm J (%) Be X, a point that satisfy the equality constraints of the NLP
_ problem. A linear approximation of h(x) at this point is:
h(x)=0

h(x) = h(x,) +V,h(x,) (X X,)
And we impose the constraint that the linear approximation be zero.
Then, as h(x,) = 0:

0 Vxh(xk)(x_xk)zo

What is a linear system in x. By simplicity, let's name Xz to the first m
components of x, (basic variables) and Xx, to the remaining ones, so
that X’ = [X'g| X’y] @and let’s try to work out Xg as functions of x,

Cesar de Prada ISA-UVA



GRG
<

' oh oh, | oh, oh, |

OX, OXy | OXo g OX,,
vh)=| .. .« .| . .« .. |=[BN]

oh,. oh,.| oh oh.

ox,  Ox_|ox_, = OX

Vh(x)X-%)=0 = [B(xk>|N(xk)][§B:§BkJ=o

Xg — Xgk :_B(Xk)_lN(Xk)(XN _XNk)

1 Which
‘Jh(XN) _ JLXB(XN)j _ J(Xsk B B(Xk) N(Xk)(XN _XNk)) depends
XN XN only on X,
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GRG
<

The problem of minimizing J(x) under

min J(X) h(x)=0 is equivalent to minimizing
" J,. (Xa(Xy), Xy) With respect to x, and

h(x)=0 without constraints. For this purpose,

one can use the gradient of J, with  dJ,  dJ N 0J OXg
Ut respect to x, that is: dx, X, OXgOX,

. OX .
Xg —Xg = —BX, ) TNX )Xy —Xy) = 8XB =-B(x,)"N(x,) so,
N

d— dJ, _ o 0 B(x,)*N(x,) Which receives the name of reduced

dx, OX, OXg gradient and can be used, for instance,
when applying the steepest descend
method in relation to Xy

a3,
OX y

Stopping

T <e
criterion :

Problems if B is
singu|ar! Cesar de Prada ISA-UVA




GRG
<

This strategy leads to points that improve the values of J(x) independently of
the linearity of h(x).

oJ, (X oJ .. (X
h( N,k) = Xy —Xy, =—0 h( N,k)
OX ’ | OX

ad, (X k)
OX

0dp (X i)
OX

XNkt =Xnk — O

‘]h(XN,k+1)z‘]h(XN,k)+ (XN,k+1_XN,k)

2

Jh(XN,k+l) _‘]h(XN,k) ~—0

So that, for a o small enough to guarantee the validity of the linear
approximation of J, the reduced gradient gives a descent direction of J

Cesar de Prada ISA-UVA



GRG
<

The main problem of this strategy is associated to the fact that the linear
approximation of h(x) leads to points that do not satisfy the non-linear
constraint h(x) = 0. It is not difficult to see that the points of the hyperplane

V.h(x, )(x=x%,)=0
Do not coincide, in general with h(x) = 0. So, if we use
Xg —Xg =—B(X ) TN )Xy — Xy )
to compute xg from X, in general they will not satisfy h(x) = O.
As the relation between the change in x,

and the change in xg is —BIN, this policy is
equivalent to use on Xx:

_ BlNd}

YV h(x)(x=x,)=0

d

Cesar de Prada ISA-UVA
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GRG
<

The correct strategy is to compute the m components xg at iteration k+1 ,
from the non-linear constraints h(x)=0 so that they are satisfied:

h(XBk+1’ Nk —aod) =0

For this purpose, the Newton’s method can be used:

5h(X o —od)
2k EXB Rk }k h(XBk+17 N K —aod) =

vl
XB,k+1 — XB,k+1 |:
vl -1
= Xgks1 B(XB w1 Xy x —od) h(XB ki XNk — cd)

If it does not converge, c must be reduced and
the iterations started again. An initial estimate of ~BINd
Xg k+1 CaN be obtained from: X1 = X q

Then, one should check that J(x) IMProves iN X1 ccar de Prada ISA-UVA



A step o too large can lead to
points where no X; could satisfy
h(X1,X5,X3)=0

Example: One single
constraint, X; basic variable,
X1, X, NON basic variables

The optimization is performed
on X, X, using the reduced
gradient d and then x; is
adjusted so that (x,, X,, X3) IS On
the surface defined by
N(X1,X5,X3)=0 .

This is equivalent to the use of a
gradient vector projected on the
constraint surface
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GRG Example
S

min J(x) = 4x, — X% +x2 -12] 5
: 2 2 e non basic : X,
20—x; —x;=0 - X feasibleinitial :x,, =| 4 _
basic: X,, X,
X, +X,—=7=0
4 4 .
R N —2X, —2%, O -4 -8 0
VIXy)'=| 2%, | =|-8|Vh(Xy)= . o 1) Tl1 i0 1
2X3 ) 10 Xo - ,
(&) N B
The reduced gradient is:
6J, & & -8 0\ (-4
d=—""= ——B(X,) "N(X,,) = (4) - (-8,10 =-2
ox, ox. ox. (X)) N(Xgy) = (4) = ( )( 9 1) (J
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GRG Example
S

As d = -2 and the non-basic variable is x,, we will optimize J,(X\)=J3,(X;)
moving X, en la direccién —d a certain amount o, e.g. ¢ = 0.4, so that the
new X, would be: x;,y-cd =2 -0.4.(-2) = 2.8

The other components of the new X ,, would be computed so that the
constraints h, and h,, are satisfy, by solving:

20-2.8°-x5=0 This simple example can be solved analytically, giving,
58 2.0 (X,= £3.487, X5 = 4.2 ) but, in general, the Newton'’s
Ot X == method should be used. A iteration of it would be:

» | . | |
Xoa = Xb i — BOXD ki Xy« —0d) "h(X] 11, Xy —od)  Starting from:

4 8 0 3.6) Initial
G o o8 N0 <[ £]-04 7] [ )( 2-(5 j estimate

Cesar de rada ISA-UVA



GRG Example
S

1 0 0 1 0
Xeki = Xpka — B(XB,k+1’2'8) h(XB,k+1’2'8) = And it will continue until

3.6 ~-2x, O T (20— X2 — X2 Fhe solution (3.487,4.2)
= - — is reached.
4.2 0 1 [2-8} X, + Xy — 7 {2.8}

> 36 The new X, would be,
then: (2.8,3.487,4.2)

_ 3.6 ~72 0)'(-038 B 3.49 and another iteration of
“la2] | 0 1 o | | a2 the GRG algorithm
could be started.

Nevertheless, before this, an improvement of J should be checked:

J(Xp) =4 2.8-34872 +42° -12=4.66<J(xy)=4 2-4* +5' ~12=5

If there would be no improvement, then ¢ should be reduced. After several
iterations the final solution is: (2.5,3.71,4.2) where V,J=0

Cesar de Prada ISA-UVA



GRG - Inequalities
-

The more general case where both equality and inequality constraints are
present, is approached in a similar way to SQP, by transforming
inequality into equality equations using additional slack variables :

min J(x) min J(x)
X X,
h(x)=0 —> h(x)=0
g(x)<0 g(x)+&=0
€>0
And the decision vector is extended with the slack variables:
z=[x,¢] min J(z)

So that we can consider problems with the format: ~ * o(2) = h(x)
The new inequalities generated by the slack nﬁi; M g(x)+e¢

variables are considered implicitly in the
steps of the GRG Cesar de Prada ISA-UVA



GRG - inequalities
-

Some aspects to be considered in the implicit treatment of the inequalities
associated to the slack variables:

1. Select as basic only those that are not very close to the constraints, so
that the non basic variables can be changed within a certain range

2. Modify the search direction d, so that the constraints associated to the
slack variables are not violated if x is moved in the direction —d

3. Check that the constraints associated to the slack variables are not
violated when the step length o is adjusted as well as when Xg is
computed in order to satisfy the equality constraints

GRG is an efficient method up to several hundred of constraints and

decision variables
Cesar de Prada ISA-UVA



Sequential solution using a
simulator

It is based on an
idea similar to
GRG

X dimn
Optimizer of J(X) with respect h(x) =0 dimm<n
to a subset of n-m variables x,

Values of
varlables X, J(x), g(X)

Numerical solution of h(x) =0
to compute the values of the
remaining m x,

Computation of J(x), g(x)

Cesar de Prada ISA-UVA



Sequential solution using a
simulator

min J(X,,X,)

h(Xb’Xd):O
9(x,,X4) <0
m<x, <M

!

min J(X, X (X,))

g(xb’xd (Xb)) < 0
m<x, <M

min J(X,., X .
X,E (X5, Xq) min J(x,,X,(X,))

h(x,,x;)=0 —
g(X,,X,)+€=0
m<x, <M €20

(X, Xq(X;)) +€=0
m<x,<M €20

X, boundary variables, dim n-m
X4 dependent variables dim m
¢ Slack variables dimr

Cesar de Prada ISA-UVA



GRG
<

- \ The KKT
min @) (V. J(@2)+A'V,c(z)—p+n'=0 conditions are:
c2)=0 + l¢(2)=0, m<z<M p'(m-2)=0 n'(M-2)=0

mSzSMJ \”20’ n=0

Given a point of the solution z, of size n, its
components are partitioned in two groups:
m dependent variables, z,

n - m independent or boundaries z,

= [zy, 24 ]

Cesar de Prada ISA-UVA



Reduced gradient
-

c(z,,z,)=0 This equation can be used to write the z, components
-1 as functions of z,
ﬁdzd +@dzb =0 = Oz, | ¢ |
0Z, 0z, dz, |0z, | oz,
dJ(z,,z4(z,)) &3 0dJdz, o) 4J| cc " 8¢ Reduced
- t - + gradient
dz, 0z, o0zydz, 0z, 0z4|0z,| 0Oz,
min J(z,)
m<z<M

Cesar de Prada ISA-UVA



MINOS
<

min J(z) ) 1. S_tart from Zy -
X 2. Linearize the active constraints in z, : D, z =v,
3. Construct the aumented Lagrangian:

()]

4. Solve the linearize problem using GRG

c(z)=0
m<z<M L=J(z)+A'c(z) +P'

J

Vo

The constraints

c(z)=0 are not : . . ,
enforced at min J(2) +1'c(z) +B'|c(@)]
every step, l_Jut D.z=v,

are added via

the aumented m<z<M

Lagrangian

5.Goto 2, z,,,= z, k=k+1, iterate until convergence
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Cutting plane CP
-

These family of methods follow three main steps:

1 Formulate the problem in the form:
min c'X
X

with x € S convex

2 Find a convex polytope containing S

3 Solve the NLP problem by means of a succession of LP
problems
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Cutting Plane CP (1)
S

1 A problem such as:
min f(2) convex
z

with z e T convex

Is equivalent to _ _
min u with x = (z , u)’
X

with
Z T convex
f(z)-u<0

That has the desired format
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min ¢'X

X

CUttIng Plane CP (2) with X € S convex

If a polytope P, containing S is found, the
problem: minimize c’x on P, is a LP one.

If the solution of this LP is x, € S, then x, is also
the solution of the the original NLP

If x, does not belong to S, then, a cutting plane
separating x, from S, will be added which will
originate a new polytope P, ., closer to S

The problem of minimizing ¢’x on P, IS
repeated until a solution, or an adequate
approximation, is found.

The different CP algorithms differ in the way the
polytope or the cutting planes are generated
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NLP Software
« /00007

e There are two main types of NLP software :

- Solvers : routines implementing algorithms that can be called from
a certain environment or programming language, usually as dllI's,
providing the solution (MINOS, OSL, Matlab Optimization Toolbox,
TOMLAB, NAG, NPSOL, CONOPT, IMSL,...)

- Modelling environments: They are software environment that
facilitate the modelling, solution, analysis and management of the
NLP problem, formulating it in a particular language (GAMS,
XPRESS-MP, AMPL, AIMSS, Gurobi,...) or format (Excel). They call
automatically one or several solvers to compute the solution

- Free software: http://www.gams.com/, http://www.gurobi.com/
e Key points when searching for the optimum are the computation

of the derivatives, the selection of the initial point and the
existence of local minimums

Cesar de Prada ISA-UVA



Software NLP

e SQP: NPSOL, Fmincon
e ISOP: SNOP

Reduced Grad

- MUSCOD, LSSOL,...
lent: GRG2, SOLVER, CONOPT

Reduced Grad

nterior point:

lent (without rest.): MINOS
IPOPT, KNITRO, LOQO
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Comparative study of NLP solvers
-

Mittelmann NLP benchmark (10-26-2008)
1
0.9 T ———— Limits Fail
sl IPOPT 7 2
£ o7 /;/ — KNITRO 7
s —s— |IPOPT
B 0.8 // /' —— KNITRO LOQO 23 4
g 05 LOQO SNOPT 56 11
S g4 ¥ ) SNOPT
s / conoprt|| CONOPT 35 1"
£ 03 / -
02 7
0.1
0 4 T . . . .
0 2 4 6 8 10 12
log(2)*minimum CPU time

117 test problems

500 - 250 000 variables, 0 — 250 000 constraints
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NLP Software / Derivatives

Most of these methods require the evaluation of the first derivatives of the
cost function J and the constraints with respect to x. If they are not supplied
by the user, the solvers may estimate them using finite differences:

J(X+ AX) — J(X) J(X+ AX) — J (X — AX)
AX 2AX

Central differences are more precise but they increase the computation
time. Usually, relative changes in Ax are in the order of 10 or 10”7
providing good accuracy. Nevertheless, if obtaining J implies the solution of
systems of equations, simulations, etc, then, Ax should be increased. As a
general rule, the precision of the internal computations should be one or
two orders of magnitude higher than the one required in the optimization.

Alternatively, many modelling environments provide automatic

differentiation, which increases the accuracy of the results
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Software NLP
« /00007

Once an optimization problem has been stated, it is convenient to re-
formulate it in such a way that numerical problems are avoided and
the efficiency in the searching of the solution is increased.

Among possible changes we can mention:
v'Scaling the decision variables

v'Changes of variables to avoid computations out of range: log(x), x*,

v'Changes of variables to avoid non differentiability, discontinuities,..

v'Changes of variables to improve the convexity of the problem
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Formulate the problem avoiding
potential numerical problems

X°+y<3

x*+log(z) <3 = {
exp(y) =z

vu=3
vxy-z8=3 = Jui=xy-7’
u>0

min u
min X :>{ u
X

—usXx<u

X <a = —a<x<a
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Formulate the problem avoiding
potential numerical problems

Add constraints Iin

order to avoid non- h(X) =0 === h(x)=0
desirable solutions of asxsb
equality constraints

_ Min zx — 3zy LP in
Exploit problem structure 0<z7z<1 ya

Min [zx — 3zy] ﬂ 7 X,y

St.xz+y-zy=2 -

B ———3 Min [zx — 3zy] LP
4x—5<zy+zx—9 _ st.xz+y-zy=2 In
Non-convex NLP a fix z Y B

problem Cesar de Prada ISA-UVA



Convexification
«. 0000007

J(Xl, X2) = XX, Non convex in X
X, = e X, = e’ Change of variables
X1X2 _ evlev2 _ ev1+v2

min J(X,,X,) =min J(V,,V,)  Convex function in v
\'

X1,Xy Vi1,V

Cesar de Prada ISA-UVA



Software NLP
« /00007

One important problem in NLP is to know if the optimum proposed by the
algorithm is a local or global one.

In general, except if the problem is a convex one, we cannot guarantee that
the solution is a global one. In order to improve the chances of obtaining a
global solution, three kind of approaches are usually used:

v'Multistart: Repeat the problem starting with different initial points spread
over the feasible set. If all of them finish in the same point, this gives a
certain confidence in the solution found.

v'Convexification: Reformulate the problem so that a new equivalent
convex problem is found and then solve this problem.

v'Global optimization: Choose a global optimization algorithm. Deterministic
global methods, such as BARON, are very slow while evolutionary

algorithms do not provide real guarantee that the global optimum is found.
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NLP Software
« /00007

Finally, another important point to consider when solving the NLP problem is
the tuning of the parameters of the algorithms, which appear, either in the
evaluation of the optimality conditions, or in the intermediate steps of the
algorithm, which themselves are LP, QP, steepest descend, etc. problems.

\J (X)) —J (Xk)\ . ka+1 — XkH <e Changes in the function J
£, +‘\](Xk)‘ -3 £, +HXkH -2 or the value of x

o} (x,) < £ Hhi (xk)H <g Tolerances in the constraints

Maximum number of iterations,....
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Minimum distance
«. 0000007

Find the closest point to the origin of
the curve on the first quadrant:

X2
C/D 5X; +6X,X, +5X; =8

— X,

NLP Problem: min /X +X;
X

under:

2 2
OX] +6X,X, +5X; =8
X, 20, x,20
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Aim: To generate 50 MW with minimum
fuel oll consumption

Fuel consumption Kg/min to

Fuel oll |
X
f, [ l — | generate x; MW in each
e Q—@ alternator
glgas 7 f, =1.46 +0.15x,, +0.0014x?,
cueloil | l ‘o g, =1.57 +0.16x,, +0.0013x:,
f, — Boilar Q_@ f, =0.8+0.2x,, +0.0009x,
g, — 2 . g, =0.73+0.23x,, +0.0008x5,
gas

Working range: Alternator 1

They can work at the same time with ~ between 18 and 30 MW

fuel oil and gas (adding powers) Alternator 2 between 14 and 25 MW
_ _ Total flow of gas less than 10 Kg/min

X; power (MW) generated in alternator |

with fuel | Cesar de Prada ISA-UVA



min f +f,= min 2.26+0.15x, +0.0014x’, +0.2x,, + 0.0009x2,

X11:%121X21, X2 X111%121X21,X22

Power constraints:
Xy + Xpp + Xoy + X5, =50
18 < X, + X, <30
14 < X,, + X,, <25 Xy 20, X, 20, Xy 20, X, 20,

Availability constraints

g, + 9, =1.8+0.16x,, + 0.0013x;, + 0.23x,, + 0.0008x,, <10
g, =1.57 +0.16x,, + 0.0013x% >0
g, = 0.73+0.23x,, + 0.0008x, >0
f, =1.46+0.15x,, +0.0014x’ >0 .

They are redundant, as they
are always positive for x;>0

Vo

1:2 =0.8+0.2x,, + 0'0009)(221 >0 J Cesar de Prada ISA-UVA



Chemical equilibrium
-

A mixture of 10 chemical species (H, H,, H,O, N, N,, NH, NO,
O, O,, OH) is in equilibrium at T=298 °K and P = 750 mmHg. It
Is known that the species are made out only of hydrogen,
nitrogen and oxygen, and the mixture behaves as an ideal gas.

Which is the composition of the mixture if we know that there
are the following amounts of elements: 2 moles of H, 1 mol of N
and one mol of O?

T =298 °K
P =750 mmHg
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Chemical equilibrium

] Moles | w,
of |

H Xy -10.021
H, |X, -21.096
H,O | X, -37.986
N X4 -9.846
N, | Xs -28.653
NH | Xg -18.918
NO | X, -28.032
O Xg -14.640
O, |Xg -30.594
OH | Xy, -26.111

At equilibrium, the Gibbs energy of the
system must be minimal

Free energy per mol of  G; = RT[w, +In(Py;)]
component j:

10
yj molar fraction of yj — XJ in
component j in the mixture =1

Find the composition that minimizes the total
Gibbs energy of the mixture:

10
G :ijGj
j=1
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Chemical equilibrium
-

10 10 10
min G => x,G, =RTY_x;[w, +In(ij in)]
X j=1 j=1 i=1

Mass conservation of element i
a; moles of element i in one mol of specie |

H |H, [H,O|N [N, [NH [NO [0 [0, |OH
a, /H [1 |2 [2 Jo Jo [1 Jo [o Jo [z
a, IN [0 |o [o [1 [2 [12 [z [o Jo [o
a, /0 o |o [1 Jo Jo [o [z [1 |2 |1
10
Zi = Zaijxj z,=2, 2,=1 z,=1 NLP problem with
=1 linear constraints
X; 20
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GAMS
<

sets ¢ compounds / H, H2, H20, N, N2, NH, NO, O, 02, OH/
| atoms /H hydrogen, N nitrogen, O oxygen /

table a(i,c) atoms per compound
H H2 H20 N N2 NH NO O 02 OH
H 1 2 2 1 1
N 1 211
O 1 1121

parameters mix(i) number of moles in the mixture / h=2, n=1, 0=1/
gibbs(c) Gibbs free energy coef at 3500 k and 750 psi /
H -10.021, H2 -21.096, H20 -37.986, N -9.846, N2 -28.653
NH -18.918, NO -28.032, O -14.640, 02 -30.594, OH -26.11/
gplus(c) Gibbs free energy plus pressure ;

lus(c) = gibbs(c) + log(750*.07031); display gplus;
gplus(c) = gibbs(c) + log( ) SR IBat 1sa-uva



GAMS
<

variables x(c) number of moles in the mixture
xb  total number of moles in the mixture
energy total free energy of the mixture
positive variables X, xb;
equations cdef(i) compound definition
edef energy definition
xdef total number of moles definition ;

cdef(i).. sum(c, a(i,c)*x(c)) =e= mix(i);

xdef.. xb =e= sum(c, x(c));

edef.. energy =e= sum(c, x(c)*(gplus(c) + log(x(c)/xb)));
x.lo(c) =.001; xb.lo = .01;

model mixer chemical mix for N2H4+02 / all /;

solve mixer minimizing energy using nlp; Cesar de Prada ISA-UVA



GAMS
<

---- VAR x number of mols in mixture

LOWER LEVEL UPPER MARGINAL

H 0.001 |0.040 | +INF EPS ** Feasible solution.
H2 0.001 |0.146 | +INF . Value of objective =
H20  0.001 |0.785 | +INF  EPS -47.3618693341

N 0.001 |0.001 | +INF  EPS '

N2 0.001 [0.485 | +INF

NH 0.001 |0.001 | +INF 0.371
NO 0.001 |0.027 | +INF :

O 0.001 |0.018 | +INF EPS
02 0.001 |0.037 | +INF EPS
OH 0.001 |0.096 | +INF EPS
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Minimum surface heat exchangers

35°C T, T, 260°C
1 2 3 ]
l 150°C l 200°C l 300°C
Ts T, Ts

Heat U (W/m2°K) | Area Size the heat exchangers
exchanger (m2) so that the especifications
1 681 A can be satisfied and its

L total surface is minimum
2 454 A,
3 527 A gpc, =50000Kcal /h°K

3

Cesar de Prada ISA-UVA



Minimum surface heat exchangers

35°C T, T, 260°C
1 2 3 ]
— +— +—
l 150°C l 200°C l 300°C
Ts T, T,
min A + A, + A Energy balance:

(T, ~150) — (T, - 35)
In(T, —150) — In(T, — 35)
(200 _Tz) — (T4 _Tl)
In(200-T,) — In(T, -T,)

_ (40) - (T5 B Tz)
PC29T) =Ush 10 a0y —in(T, -T,)

A >0,T,>35T,<150-A,T,>35T,>T,, T, <200-A, T, >T,, T, <260, T, >T,
Cesar de Prada ISA-UVA

apc, (T, —35) =U, A = Fp,C,, (150 -T;)

apc. (T, = T,) =U, A, = F,p,C,,(200-T,)

= F5p4C,5(300 - Ty)




Placement

y ‘@
(=)
X
Tank Radius r (m)
1 5
2 15
3 10

Three cylindrical storage tanks must be placed
in a site (first quadrant) and enclosed with a
wall, which is the best placement in order to
minimize the wall length?

(x.,y;) coordinates of the cylinder | centre

A, B sizes of the wall length and width
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Placement

y A
2 L]
B
y ‘@
(=)
X

Tank Radius r (m)
1 5
2 15
3 10

(x,y;) coordinates of the cylinder centre

A, B sizes of the wall length and width

min 2(A+ B)

X;i.Yi,AB

06 =x)+ =y 26+ ] =1j=2

‘yi—yj‘+ri+rj <B

Vv
N

i=1j=3
i=2j=3

X >r y.>r i=123 A>0,B>0

Multiplicity of solutions due to the problem
symmetry. Discontinuities in the derivatives
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Placement: alternative

Tank 3 is placed at the origen, so that
@ B, there are only two tanks to place

= / X min (A +A +B,+B,))
@ \U 3 BZ Xi Yi A, Ay,By LBy 1 2
A, A, (Xi_Xj)2+(yi_yj)2Z<ri+rj)2
X+ <A (i=1j=23
Here all derivatives — A, <X —T, > 1=2,]=13
are continuous y. 41 <B, i=123
-B, <y,

A >0,B,>0,A,>0,B,>0
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Three stages compressor
S

The power
consumed by a
reversible adiabatic
compressor which
iInput temperature is

T, is given by:
_ 4

g mol/h T°K y=4/3 % P \v

W =qRT sal -1
If the gas enters at 1bar and must be Y =1\ Pt
compressed up to 64 bars maintaining q B -
and T constants, which must be the y= “ R_ constante gases
intermediate working pressures in order to C

consume the minimum energy?
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Three stages compressor
-

W

P \4
Total — qRT4 (Ezj +(

The total power
consumed will be the
sum of the power
consumed by each
stage:

1 1

1 4 4
min P4 + i} + o4
AP, R, P,

P>1 P <P, <64

Cesar de Prada ISA-UVA



Octane number In mixtures

In the blending operation of a refinery, several products with different
properties, among them RON (Research Octane Number), are
mixed to obtain a certain amont of commercial gasoline. Some of
the properties of the mixture can be computed as a linear
combination of the corresponding property of the different
components. Nevertheless, this is not the case with some others

such as RON.

Octane
The blending problem consists of number
determining the flows of the components /
with minimum cost that guarantees an
octane number (and other properties) above %
a minimum, respecting component’s

availability and other possible constraints
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Octane number In mixtures
« 007

Variables: :
min > p.X,
X; flow of compound i Xio 7
p. price of component i F=> X
i
F desired total flow of the mixture X
— i
z;, octane number of component i Zm = [Z F Zi}
Z,, octane number of the mixture x. <M.
1 |
¢ non-linear function 7 >0
.
0 Minimum RON in the mixture
M; maximum availability of component i NLP problem
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RON In mixtures

The previous formulation is
non-linear. In order to
simplify the solution, the
Blending Index method can
be applied, which transform
the problem in a LP one. It
consist of a change of
variable w; = B,(z;), specific
for each property i, such
that it verifies:

Fw, =FB(z,)= ZXiBi(Zi) :ZXiWi

! | LP
W, >B(0) problem

Afterwords, the value of z
can be recovered from
Wy, = B(zp,)
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Data reconciliation (Rollins 93)

A 6

In the process represented in the figure the flows of the different streams
(1 to 7) have been measured using transmitters with different accuracies,
as in adjoint table

Stream 1 2 3 4 5 6 4
Value 49.5 81.5 85.3 10.1 72.9 25.7 50.7
Variance | 1.5625 | 4.5156 | 4.5156 | 0.0625 | 3.5156 | 0.3906 | 0.3906

Which is the best coherent estimation of the real value of the flows?
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Data reconciliation

@]
O

A 6

Notice that the measurements are not coherent, e.g. a balance around the
C unit gives: Fg= F,+ F;  83.5%10.1 + 72.9 = 83, due to errors in the
transmitters. One wish to correct them as less as possible according to its
respective accuracy, so that the mass balances are satisfied.

Stream 1 2 3 4 5 6 V4
Value 49.5 81.5 85.3 10.1 72.9 25.7 50.7

Variance 1.5625 | 4.5156 | 4.5156 | 0.0625 | 3.5156 | 0.3906 | 0.3906
Cesar de Prada ISA-UVA




Data reconciliation
-

Variables Some errors (losses,
malfunctions, etc.) can be
detected according to the

. estimated flow in stream i size of the corrections

F., measured flow in stream i
F

balances around each node

2 Constraints: The mass
im
] must be fulfilled

_ _ F+F+F=F F,=F
The relative corrections are made

proportional to the inverse of the F,=F+F Fs=F+F
variance of each instrument F >0
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Chemical reactor

Specifications: T;, q, ¢;, Ty

T, q, G
;b Raw material
EP l product A
Tci =
pk A—>B
Coolant

l Products: Aand B
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Conservation of A and B

Energy conservation

qc. —qc, —Vkc, =0

Q=UA(T-T,)

—0Cg +Vkc, =0 apc, T, —apc, T+Vke,H-Q =0
_Re R
k_Be ijcpj(Tci_Tc)+Q:O
C, =C:(1-X) x conversion
[
® sk Row material
| l - product A
] 1 q1 C;

Tci j: N | | Geometry:

P g Reactor 2
Coolant L V = MZ L

A—>SB l Products: Aand B A= 7DL
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Reactor design
-

Total variables: 14

— 1C'1C1C1\/1T1X1T'1A1T1
—(c; +Vpe %TCA=O Cy redundant g -I-I . ! ‘

qc, —gc, —VBe_%T c,=0

C, =C,(1—x) X conversion e D L
gec, T, —agpc, T +Vkc ,H-UA(T-T;) =0
Fpc, (T, —T)+UA(T-T)=0 Equations:7
V nD? . Specifications: 4
A= DL g, Ci Tis Tgi
X, T and L can be selected Degrees of freedom: 3 x, T, L

W|th|n d I’ange Cesar de Prada ISA-UVA



Manual Design from x,T,L
Given x. Tand L :

Computec,: C= !1- x! Ci

Compute the size V. V = gx / (k(1- x))

Compute sizes D, A and the building cost
Compute Q Q=-(ci-c)gH - cq(T - T))
Compute T, T.=T-Q/(UA)

Compute F F=Q/(p;cy (Tc-Tg)
Compute operation costs

If the design is not satisfactory, then, specify another x, T
or L and start again Cesar de Prada ISA-UVA



Degrees of freedom and
optimization

e The problem can be formulated also as an

T STST
X SX<X
L..<L<L_,

C,20 cy=7
V>0 1<L/D<3
T-T,210

optimization one where the values of the
variables are selected so that, verifying the
model equations, a set of constraints are
satisfied and a certain cost function is
minimized

min construction cost =
— 19169 D1.066 |_0.802 €

Notice that if the degrees of freedom are zero,
then there is only a single solution and no room
for optimization is left.
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Two approaches First one: all
variables are decision variables

Max Benefit = max - 1916.9 D166 [ 0802 + (gcgpriceg

X, T, L,D,F,....... - chipriceAi - |: priceF )*time
nder: c, — e, — Ve TR e, =0
_E

Ton ST<T —qc, + Vpe /?TCA ~0
Xmin ngxmax CA :Ci(l—X)
L., SLSL, ., gpc, T, —apc, T+ Vkc ,H-UA(T-T,) =0
Ca=20 c520
V>0 ijCpJ(Tci ~-T.)+UA(T-T,)=0
1<L/D<A4. V:7Z'D2L
10<T-T, <. 4

A=7DL Cesar de Prada ISA-UVA



Second approach: only the degrees of
freedom are decision variables

Max Benefit = max - 1916.9 D166 | 0802 + (qcgpriceg -
X, T,L - qCy;price,; - F priceg )*time

_E

Use only the degrees of qc, —qc, —Vpe G Cy=0
freedom x, Tand L as -E/
decision variables and —qcg +Vpe ""c, =0
compute the other variables ¢ —c. (1-x)

. A I
by means of the equality
constraints of the model. gec, T, —qpc, T +Vkc ,H-UA(T-T;) =0

A simulator is needed, there Foc.(T. —T.)+ UA(T-T.)=0
i i J7pI\ c c
are no equality constraints

and the inequality ones are D
evaluated in the simulator V= A L
A= DL
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Optimal design

Max Benefit = max - 3*1916.9 D1066 [ 0802 + (gcgpriceg -

X, T, L

- gCp;price,; - F priceg )*time

under:
Tmin < T < Tmax

X oo SX<X

mi

I—min < L < Lmax

C,=20 c520

V>0
1<L/D<4
10<T-T <...

qc. —ch—VBe_%TCA =0
—chJrVBe_%TcA =0

Ca =Ci(1-X)

gec, T, —gpc, T +Vkc ,H-UA(T-T;) =0
Fpic,(T; —T.)+UA(T-T,)=0

2
V = D L
4
A=7DL Cesar de Prada ISA-UVA




Second approach: only the degrees of
freedom are decision variables

onstraints evaluation
Ton ST<T,,, Cost

N Function
.20 c.20  €valuation
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Exam P le Specifications:
Ti! g, C; g-= 2.832 m3/h

k=0.5ht

. 5 kJ/kmol
Cl —
h— | T p = 800.8 Kg/m3

¢;=15 kmol/m3
U= 6129 kJ/h m?-K

Cost = 575.7 D1.066 | 0.802 Cp = 0,968 kJ/kg-K
_ Cpc = 1,291 kJ/kg-K
Solution: T=65, D=L =3.03 p; = 1041.1 Kg/m3
T, =515 F, =584 x=0.8 jacket width 0.1 m.
1< L/D<3 F <90
J =4565.04 € 10< T - T<30
0 8 gesar de grada ISA-UVA



Reduced space SQP (rSQP)
<

e Recommended for large scale problems with few

degrees of freedom. QP problem to be
solved at every step

Hy IViL(Xk,lek,T\k)
h(x,)+V,h(Xx,)AXx=0, m<x, +Ax<M

rrlin V. J(X, )AX + %Ax' H, AX

rSQP moves at every step in two separate directions. One fulfils
the linearized equality constraints, the other moves along these
constraints improving the cost respecting the inequalities Codes: SNOPT,

Associated Lagrangean: MUSCOD,..

L= vxa(xk)Ax+%Ax'HkAxm(h(xk)+vxh(xk)Ax) '

+u'(m—-x, —Ax)+n'(X, +Ax—M)
Cesar de Prada ISA-UVA



rSQP  KKT conditions
<

V. JIX.)+AX'H, +A'V h(x,)—p4n'=0
h(x,)+V,h(x,)Ax=0, m<x, +Ax<M,
p ' (M-x, —AX)=0 p, 20
N (X, +AX-M)=0 mn, >0
Let's define a new basis [Y,, Z,] for Ax where the last n-m components, Z, are

perpendicular to the gradient of the equality constraints h and Y, is chosen to
make [Y,, Z,] non-singular :

Vxh(xk)zk =0 I

n size of x
AX =Y, AX, +Z, AX, m size of h
Y (nxm), Z,(nx(n-m))
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If they were no inequality constraints, then u, n =0 and the KKT would

reduce to:
H'  V,h(x) [ Ax] V() And, in the new
V. h(x,) 0 M| | h(x) basis:
. | ' _Axy_ ' '
[Yk’zk] 0 H, Vxh(xk) [Yk1zk] 0 AX :_[Yk’zk] 0 Vx‘](xk)
0 1| V., h(X,) 0 0 I xz 0 I h(x,)
| Mk
| YI;Hk'Yk YI;Hk'Zk Yl;vxh(xk)l__AXy_ _YI;VX‘](Xk)I_
ZH'Y, ZH/'Z 0 AX, |=— Z,V J(X,)'
_vxh(xk)Yk 0 0 L Ay _ h(Xk)
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},(H/ M VA h(xk) Tax, T [V, ()"

ZHY, ZH.Z AX, |=— Z,V I(x,)
V,h(x)Y, 0 0 | h(x,)

Square, allows computing Axy, This term
Vih(X)YiAx, =-h(x,) brings X, to the linearized constraint h
ZH 2 Ax, =-Z,H, Y, AX, —Z,V,J(X,) Will allow computing Ax,

If Z’H,Z, is not PD, add

Then, AX =Y\ AX, +Z,AX, Bl terms in the diagonal

A can be computed from first row with full expression or
approximating the terms Y, 'H,’Y, and Y ,'H,’'Z, by zero::

Yllvxh(xk)l;\’k - _YILVXJ(Xk)'
Cesar de Prada ISA-UVA
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