
Unconstraint Optimization

Prof. Cesar de Prada
Dpt. Systems Engineering
and Automatic Control
UVA
prada@autom.uva.es

Outline

 Theoretical solution
 Optimizing a function of one variable

– Newton type methods
– Bracketing methods
– Polynomial approximation methods

 Multivariate methods
– Gradient based algorithms
– Newton type algorithms
– Gradient free algorithms

 Software

There exist many
methods. Only some of
them will be
considered in the
course

Extremum analytical conditions

n
x

Rx

)x(Jmin

∈

In unconstraint optimization
problems there exist a set of
analytical conditions for a point
being the solution

0
x

)x(J
*x

=
∂

∂

The hessian H determines the character of
the possible optimum

Necessary
condition

*x
2

2

x
)x(JH

∂
∂

=

Multivariable Optimization

 Example

n
x

Rx

)x(Jmin

∈

[]1221
21

2

1
2121

21
2
2

2
121

xx2xx2
x
J

x
J)'x(g

2
x
x

21
12

)'x,x(
2
1)x,x(J

2xxxx)x,x(J

−−=







∂
∂

∂
∂

=

+















−

−
=

+−+=

0x;0x
0)x(g
*
2

*
1

*

==

⇒=

Iterative methods

Contours of J(x)

kkk

kk1k

sx
xxx

σ+=
=∆+=+

Iterative methods:

Starting from an initial guess
x0 , the algorithm provides a
new point located in a
searching direction sk that
provides a better value of J.

The algorithm continues
iterating until xk is closed
enough to the optimum

xk xk+1

sk

xk = value of vector x in the stage k

σksk

Criteria for stopping the iterations

ε Sets the precision or tolerance

ε0 > 0 avoids divisions by zero

xk xk+1
sk

1
k

x
)x(J

ε≤
∂

∂

2
k0

k1k

x
xx

ε≤
+ε
−+

3
k0

k1k

)x(J
)x(J)x(J

ε≤
+ε
−+

1 El gradient is small enough

2 The solution does not move in a
significant way

3 The cost function does not improve
in a significant way

4 The number of iterations exceeds
a certain maximum number N

Properties of an iterative algorithm

xk xk+1
sk

Stability / Convergence

The step length of every iteration
is decreasing

Convergence to the optimum

Local / Global convergence

Iterative algorithms are discrete
dynamical systems and can be studied

Properties of an iterative algorithm

xk xk+1
sk Speed of convergence to the

optimum.
c speed of convergence p order of
convergence

1c0

earglkc
xx

xx
p*

k

*
1k

<<

≤
−

−+

0
xx

xx
lim p*

k

*
1k

k
=

−

−+

∞→

Superlineal speed of convergence

Multivariable Optimization

 Many approaches:
– Gradient based methods
– Newton type methods
– Gradient free methods

n
x

Rx

)x(Jmin

∈

Gradient based methods

The gradient vector of
J(x) at x points to the
direction where the
function J has the bigger
increase.

The opposite direction is
the one with the
maximum decrease of
the function J, and can
be considered as a good
searching direction

Contours of J(x)

Jg(x) '
x
∂

=
∂

-g(x)

Steepest descent method

Contours of J(x)

k

k
k 1 k k

k k k

k k k

k

J(x)x x '
x

x g(x)
min J(x g(x))

parar si g(x)

+

σ

∂
= −σ =

∂
= −σ

−σ

≤ ε

xk

xk+1

Move as much as possible in
the direction of maximum
decrease performing an (scalar)
optimization of the step length
σk

Quadratic functions

Any function continuously differentiable can be approximated by a
quadratic one near the optimum:

* *

*

2
* * * *

2
x x

2

2
x

J 1 J(x)J(x) J(x) (x x) (x x) ' (x x)
x 2 x

1 J(x)J(x) a b 'x x 'Cx C
2 x

∂ ∂
= + − + − − +

∂ ∂

∂
= + + =

∂
The region x’Cx ≤ 1
is convex if C is PSD

They are fairly easy functions, so that if a method does not work well with
quadratic functions, likely it will not work well with other functions.

Steepest descend algorithm applied to
quadratic functions







σ−
σ−=

+=

++=

σ

+

))((min
)(

)(

'
2
1')(

1

kkk

kkkk

xgxJ
xgxx

Cxbxg

CxxxbaxJ

k

C, Symmetric definite positive

A quadratic function is a good
candidate for testing the
method because many
functions can be approximated
by quadratic ones near the
optimum, they are easy to deal
with and have analytical
solutions.

Converges to the optimum when k→∞ ?

Speed of convergence

Steepest descend algorithm
applied to quadratic functions

)x(Cg)'x(g
2
1)x(g)x(J

)x(Cg)'x(g)Cxb()'x(g

)x(g)'Cxb(
2
1)x(J)]x(Cg)'x(g

2
1

Cx)'x(g)x(Cg'x[
2
1)x(g

2
'b2)x(J

))x(gx(C))'x(gx(
2
1

))x(gx('ba))x(gx(J

Cxb)x(gCx'x
2
1x'ba)x(J

kk
2
k

2
kkk

kk
2
kkkk

kkk
kkk

2
k

kkkkkkkkk

kkkkkk

kkkkkk

σ+σ−=

=








σ++σ−

−σ+
−=σ+

+σ−σ−+σ−=

=σ−σ−+

+σ−+=σ−

+=++=

Steepest descend algorithm
applied to quadratic functions

)x(g
)x(Cg)'x(g

)x(g
xx

)x(Cg)'x(g
)x(g

0)x(Cg)'x(g)x(g

0))x(gx(J))x(gx(Jmin

)x(Cg)'x(g
2
1)x(g)x(J))x(gx(J

k
kk

2
k

k1k
kk

2
k*

k

kk
*
k

2
k

k

kkk
kkk

kk
2
k

2
kkkkkk

*
k

k

−==σ

=σ+−

=
σ∂
σ−∂

⇒σ−

σ+σ−=σ−

+

σ
σ









=









−

−
=








−
−

=

+−+=

3.0
8.0

21
12

C
xx2
xx2

)'x(g

2xxxx)x,x(J

0

12

21

21
2
2

2
121

x

Example

)x(gxx kkk1k σ−=+

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

0 0,1 0,2 0,3 0,4 0,5

x1

x2

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8

k

J(
x)

Excel

Banana Function (Rosenbrock)

2
1

22
12)x1()xx(100)x(J −+−=

Steepest descend algorithm
applied to quadratic functions

)x(Cg)x(g
)x(gCCxbCxb)x(g

Cxb)x(g)x(gxx

kkk

kkk1k1k

kkk1k

σ−=
=σ−+=+=

+=σ−=

++

+

Convergence? The exact optimum is reached when g(x)=0

With quadratic functions, the steepest descend either reaches the
optimum in the first step or never

Assume that g(x0)≠ 0, Then, it may happens that g(x0) is or not an
eigenvector of C.

Steepest descend algorithm
applied to quadratic functions

0)x(g
)x(g)'x(g

)x(g
)x(g

)x(g)x(g)x(Cg)x(g)x(g

)x(g)x(Cg

0
00

2
0

0

0
*
k00

*
k01

00

=λ
λ

−=

=λσ−=σ−=

λ=

If g(x0) is an eigenvector of C:

And the optimum is reached in the first
iteration of the algorithm

)x(Cg)x(g)x(g k
*
kk1k σ−=+

Steepest descend algorithm
applied to quadratic functions

0z)z)x(g(1)x(g

)z)x(g(
)z)x(g()'x(g

)x(g
)x(g

)z)x(g()x(g)x(Cg)x(g)x(g

)x(gz00zz)x(g)x(Cg

00

0
00

2
0

0

0
*
100

*
k01

000

≠
α

−=+α
α

−=

=+α
+α

−=

=+ασ−=σ−=

⊥≠α≠+α=

If g(x0) is not an eigenvector of C, then:

And the optimum is not reached in the
next iteration

Steepest descend algorithm
applied to quadratic functions

0z)z)x(g('z)x(Cg'z

but
0)x(g'z)x(Cg'z

'zC'zzCz)z()z(C)x(g)x(Cg

2
00

00

11

≠=+α=

=λ=

λ=⇒λ=⇒
α

−λ=
α

−⇒λ=

In addition, g(x1) is not an eigenvector of C:
In fact, if it were true, then there exist a λ such that:

Which contradicts the expression (*), hence , by
induction, it is proved that the optimum will never
be reached, even if k→∞

(*)

Newton type methods

)x(gCxx)x(gCx

0xC)x(g0)xx(g
xC)x(g)xx(Cb)xx(g

xxx

CHCxb)x(gCx'x
2
1x'ba)x(J

k
1

k1kk
1

k

kkkk

kkkkkk

kk1k

−
+

−

+

−=−=∆

=∆+⇒=∆+
∆+=∆++=∆+

∆+=

=+=++=

Approach: Design a perfect method for a quadratic function and
extend it to other functions.

Assume that J(x) is a quadratic function, Which should be ∆x so that
the optimum is reached in a step?

C is the hessian, or matrix
of second derivatives of J

Newton’s method

By analogy, when J(x) is any twice differentiable function, we
could use the algorithm:

kkk1k

k
1

kkk

k
1

kk

1

2
k

2

k

sxx

))x(g)x(Hx(Jmin

)x(g)x(H)x(g
x

)x(Js

k

σ+=

σ−

−=







∂

∂
−=

+

−

σ

−

−

As the algorithm progresses and J(x) approaches the optimum,
then J(x) will be more similar to a quadratic function and the
algorithm will converge faster to the optimum.

Second order method

sk search direction in
the step k









=









=








−








=








−








−

−
−








=









=









−

−
=








−
−

=

+−+=

−

0
0

)'(g

0
0

3.0
8.0

3.0
8.0

2.0
3.1

21
12

3.0
8.0

3.0
8.0

21
12

C
xx2
xx2

)'(g

2xxxx)x,x(J

1

1

1

0

12

21

21
2
2

2
121

x

x

x

x

Example

)x(gCxx kkk
1

1
−

+ −=

As J is quadratic:

Excel

Convergence

k
k 1 k k

k k k k
12

k
k k k k2

J(x)J(x) J(x) x
x

J(x) g(x) ' s

J(x)J(x) g(x) ' g(x)
x

+

−

∂
≈ + ∆ =

∂
= + σ =

 ∂
= −σ  ∂ 

In a first order approximation:

kkk1k

k
1

kkk

k
1

kk

sxx

))x(g)x(Hx(Jmin

)x(g)x(Hs

k

σ+=

σ−

−=

+

−

σ

−

Verification: sk is a descent direction if:

0s)'x(g kk >−

-g(xk)
sk

If the Hessian is not PD,
then there is no
guarantee that J(x)
decreases every step

Only if J(x) is convex we
can guarantee that H is
PD

Advantages / disadvantages of the
Newton’s method

Advantages:

Usually less iterations are required to reach the optimum

Disadvantages:
The Hessian and the gradient of J(x) are required
The Hessian must be inverted
There is no guarantee that in a certain step the Hessian is PD and
the method converges

The gradient and the Hessian can be
approximated by finite differences

Instead of inverted the Hessian, it is
possible to solve a linear set of
equations to compute sk:

)x(gs
x

)x(J
kk2

k
2

−=







∂

∂

Marquardt-Levenberg’s Algorithm

It modifies the Hessian in order to guarantee that it is PD every step

))x(gI
x

)x(Jx(Jmin

 PDis I
x

)x(J that so choose

0)x(gI
x

)x(Js

sxx

k

1

k2
k

2

kk

k2
k

2

k

kk

1

k2
k

2

k

kkk1k

k

−

σ

−

+







β+

∂
∂

σ−







β+

∂
∂

β

≥β





β+

∂
∂

−=

σ+=

Marquardt-Levenberg’s Algorithm

kkk1k

k

1

k2
k

2

kk

kkkkk

kkk2
k

2

k

00

sxx

))x(gI
x

)x(Jx(Jmin

srecompute20s)'x(gif

)x(gsI
x

)x(Jsin olves

,xChoose

k

σ+=







β+

∂
∂

σ−

β=β⇒≤−

−=





β+

∂
∂

β

+

−

σ

Minimization with respect to σk

Any of the single variable optimization methods can be applied

Sometimes, for simplicity, a value of σk is chosen with the only condition
that J(x´k) decreases in the corresponding step.

J(xk+σksk)

σk

σk must be ≥ 0 and the value of the pure
Newton’s method corresponds to σk =1

J can be evaluated at σk = 0 and 1, if it
does not decreases, then a quadratic
interpolation can be computed, as two
points J(xk+sk), J(xk) plus g(xk)’sk are
known, and σk can be obtained as its
minimum: k k

k
k k k k k

g(x) 'sˆ
2[J(x s) J(x) g(x)s]

−
σ =

+ − −

J(xk+sk)

J(xk) - σkg(xk)’sk

1

Quasi-Newton Methods

They try to avoid the computation of the inverse of the Hessian, which
is a time consuming tasks, substituting it by a matrix Ĥk definite
positive that approaches H(xk)-1 after some steps.

....x
x

)x(Jx
2
1x)x(J)x(J)xx(J)x(J k2

k
2

'
kkkkkk1k +∆

∂
∂∆+∆∇+=∆+=+

k
'
kkkk1k xBx

2
1x)x(J)x(J)x(J ∆∆+∆∇+=+

Any approximation B (of second order) to the Hessian should verify:

Taylor series expansion of J(x) at xk :

Quasi-Newton Methods

k
'
kkkk1k xBx

2
1x)x(J)x(J)x(J ∆∆+∆∇+=+

kk
1

kkkk1k

x)x(gB
xB)x(gxB)x(g)x(g

∆=∆

⇒∆=∆⇒∆+=
−

+

Computing the gradient of J(xk+1) with respect to ∆x:

Hence, a matrix that be a second order approximation of the inverse
of the Hessian should verify:

kk x)x(gH~ ∆=∆

H~

Quasi-Newton Methods

kk1k

kkk

TH~H~
)x(gH~s

+=

−=

+

Search direction

Update formula with Tk a correction matrix
sartisfying:

kkkk x)x(g)TH~(∆=∆+

We start with an initial PD matrix Ĥ0 and compute the first step in the
search direction: Then, we look for a correction T0
such that Ĥ1 = Ĥ0 + T0 verifies the above mentioned condition:

)x(gH~s 000 −=

001 x)x(gH~ ∆=∆

There are several choices of Tk
satisfying this relation

In general:

Quasi-Newton Methods

kkkkkkk
k

kk

k
k

k
kkkkk

k

kk

k

k
k

n
kkkk

x)x(gH~x)x(gH~)x(g
)x(g'

')x(gH~

)x(g
)x(g'

'x)x(gH~)x(g)TH~(

)x(g'
')x(gH~

)x(g'
'xT

0,R,:.e.px)x(g)TH~(

∆=∆−∆+∆=∆
∆β

β∆
−

−∆
∆α

α∆
+∆=∆+

∆β
β∆

−
∆α

α∆
=

≠∈βα∀∆=∆+

There are several choices of Tk satisfying:

DFP Algorithm (Davidon, Fletcher,
Powell)

)x(gH~)'x(g
))'x(gH~)(x(gH~

)x(g'x
'xxT

)x(g'
')x(gH~

)x(g'
'xT

)x(gH~x

kkk

kkkk

kk

kk
k

k

kk

k

k
k

kkk

∆∆
∆∆

−
∆∆
∆∆

=

∆β
β∆

−
∆α

α∆
=

∆=β∆=α

In particular, the choice:

Leads to the DFP method, which, when applied to quadratic functions,
gives an exact estimation of the hessian after n steps. n = size of x

DFP Algorithm (Davidon, Fletcher,
Powell)

)x(gH~)'x(g
))'x(gH~)(x(gH~

)x(g'x
'xxH~H~

)x(g)x(g)x(gxxx
)x(gH~xx

))x(gH~x(Jmin
simmetric,PDH~xChoose

kkk

kkkk

kk

kk
k1k

k1kkk1kk

kkkk1k

kkkk

00

k

∆∆
∆∆−

∆∆
∆∆+=

−=∆−=∆
σ−=

σ−

+

++

+

σ

BFGS Algorithm (Broyden, Fletcher,
Goldfarb, Shanno) 1970

zA'v1
A'zvAA)zv'(A

usingestimated can beBH~
xB'x
B'xxB

)x(g'x
)'x(g)x(gBB

T of expression n thei)x(g with xwaps
)x(gH~x
)x(gxB

1

11
11-

1
1k1k

kkk

kkkk

kk

kk
k1k

kkk

k1kk

kk1k

−

−−
−

−
++

+

+

+

+
−=+

=

∆∆
∆∆−

∆∆
∆∆+=

∆∆
∆=∆

∆=∆

The Hessian is recursively
estimated

∆x y ∆g play symmetric roles in
relation with DFP

If Bk es PD and ∆xk’∆g(xk) > 0
then Bk+1 is PD. If not, Bk is not
updated

if J(x) is convex,
then Bk is
always PD

BFGS Algorithm (Broyden, Fletcher,
Goldfarb, Shanno) 1970

)x(g'x
'xx

)x(g'x
)'x(gxIH~

)x(g'x
)'x(gxIH~

)x(g)x(g)x(gxxx
sxx

)sx(Jmin
)x(gH~s

symmetric,PDH~,xchoose

kk

kk

kk

kk
k

kk

kk
1k

k1kkk1kk

kkk1k

kkk

kkk

00

k

∆∆
∆∆+





∆∆
∆∆−





∆∆
∆∆−=

−=∆−=∆
σ+=

σ+
−=

+

++

+

σ

Usually is more efficient than DFP

Methods using values of J(x) only
(Direct search)

 Methods based on the use of the gradient of J(x) work well when
applied to “smooth” functions, even if they are many decision
variables.

 Nevertheless, in practice, the computation of the gradient can be
difficult, or even impossible, due to discontinuities, complex non-
linearities, etc.

 Very often, numerical estimations of the gradient based on finite
differences are time consuming.

 An alternative for those situations where the gradient is difficult to
obtain is to relay on optimization methods that only use values of J(x),
e.g.:

– Simplex
– Powell’s conjugate directions

Simplex search method

 This type of methods uses sets of points where the value of J(x) is
evaluated, located on places that form a certain pattern, employing these
values to evolve towards a new pattern closer to the optimum.

 The easiest geometrical figure in a n-dimensional space is called a
simplex and has n + 1 vertices. For instance, a simplex in R2 is an
equilateral triangle, in R3 un tetrahedron, etc.

 The simplex search method employs the values of the function in the
n+1 vertices of this geometrical figure to generate another simplex
located closer to the optimum and continues the iteration until the
optimum is found within the required precision.

 Excepting the name, it has nothing in common with the LP Simplex
method.

Simplex

Simplex search method

1 J(x) is computed in the
n+1 vertices of the simplex

2 The vertex with the worst
value is selected and
projected a certain distance
through the centroid formed
by the remaining vertices.

3 A new simplex is formed
with the projected vertex
and the remaining ones

4 If there is an
improvement, the iteration
continues until the required
tolerance is met

vertex
centroid

Simplex search method,

When the iterations advance, either the optimum is reached or it is
possible that, before reaching the optimum with the required precision,
a cyclical situation appears between two or more simplexes. In order
to avoid these cycles, three rules are applied:

1 If the worst vertex was already generated in the previous iteration,
then change to the second worst vertex.

2 If a vertex remain in the same value for more than M iterations, then,
reduce the size of the simplex by a factor, using as a base the point
with smaller value of J(x). Advise: M = int (1.65n + 0.05n2)

3 The iterations are finished when the simplex is small enough or the
standard deviation of the values of J(x) evaluated in the vertices is
small enough

Generation of points of the simplex

Starting from the base point x(0) and a given scale factor α, the
coordinates of the remaining vertices x(i) , i= 1,...,n of an initial regular
simplex can be computed by:










≠α



 −++

=α



 −+++

=
ij if

2n
11n

ij if
2n

1n1n

)0(
j

)0(
j

)i(
j

x

x
x

If x(j) is the vertex to be reflected, then, the centroid xc of the remaining points
and the new location of the reflected point are:

)j(
oldc

)j(
new

n

ji
0i

)i(
c xx2xx

n
1x −== ∑

≠
=

Nelder – Mead’s method

Instead of using a regular simplex, it expands or contracts it according to
a set of rules in order to improve the convergence.

11)xx)(1(xxx
n
1x)j(

oldc
)j(

old
)j(

new

n

ji
0i

)i(
c <θ≤−−θ++== ∑

≠
=

Jm < J(xr)< JM

θ = 1

JM < J(xr) ≥ J(xold)

θ = - 0.5
xr

Normal
reflection

JM < J(xr) < J(xold)

θ = 0.5 J(xr)< Jm

θ = 2

Jm lowest value of
J on simplex

JM second highest
value of J on the
simplex

xold

Nelder – Mead’s method

 Advantages:
– Easy to implement, requiring small storage resources and

evaluations of the function only.
– Few adjustable parameters
– Robust againt noises and errors in the computation of the

function as it uses the worst value

 Disadvantages:
– Scaling of the variables id required
– Slow convergence as it does not use neither pass iterations

information nor structural one

Powell’s conjugate directions method

In a similar way as other methods, the design of the
method is made with reference to a quadratic function,
applying it later on to any J(x)

Cx'x
2
1x'ba)x(J ++=

How to find the minimum of J(x) without using the gradient
or the Hessian?

The core idea is to look for the minimum along each of the
so-called C-conjugate directions, on which the function J(x)
only depends on a single component of vector x, so that the
search can be performed with mono-dimensional methods

C conjugate directions

x

z

DzzSzbaCSzSzSzba

CxxxbaxJ

'
2
1'''

2
1'

'
2
1')(

++=++=

=++=

If a matrix S diagonalizes C, so that S’CS =
D is diagonal, then, using the coordinate
system given by: z = S-1x

As there are no cross terms in z because D is diagonal, the function J(Sz) is
separable and its minimum can be computed as a sequence of n minimization
problems with respect to every component zj of z

[] []

() ())(J)(J2323

2323
20
03

123)Sz(J)x(J

21 21
2
22

2
11

2
2

2
121

2

1
21

2

1

zzzzzz

zzzz
z
z

zz
z
z

+=++++=

=++++=










+





+==

x2

z1

z2

x1

[] nn2211

n

2

1

n21 s...sss...ssSzx zzz

z

z
z

+++=



















==




Minimize J(Sz) over every component zj of z is equivalent to minimize
J(x) over every one of the n directions called C-conjugates

C conjugate directions

s1

s2 Using this method, after n
iterations we will reach the
optimum of a quadratic function

The new axis coincide with
the main directions of J(x)

C conjugate directions

Condiction S’CS = D diagonal can be formulated as:

[]

ji0Cs's
a0...0
0...00
0...a0
0...0a

s|...|s|sC

's

's
's

ji

nn

22

11

n21

n

2

1

≠=



















=





















Definition: Given C (n x n) symmetric, the directions s1, s2, ...sr r ≤ n are
C-conjugates if they are lineary independent and verify:

ji0Cs's ji ≠=

Parallel subspace property

Given a quadratic function J(x) and a direction d, ∀ x1 ≠ x2 ∈Rn it happens
that if v1 is the solution of

)dx(Jmin 1 σ+
σ

And if v2 is the solution of)dx(Jmin 2 σ+
σ

Then, the direction v2 – v1 is C-conjugate to d

d

d

v1

v2

x1

x2
v2-v1

C conjugate directions

()

()
()

() 0Cd'v'v
0dC'v'b
0dC'v'b

0dC'w'bw
w
JJ

:óptimo elen)dx(J)w(J

Cxb)x(gCx'x
2
1x'ba)x(J

12
1

2 =−




=+
=+

=+=
σ∂

∂
∂
∂=

σ∂
∂

σ+=

+=++=Proof:

So, direction v2 – v1 is C conjugate with d

The idea can be extended to n directions: If starting from x1 and x2 we
obtain v1 and v2 after m < n searches over the m conjugate directions
s1, s2,...,sm, then v2 – v1 is C-conjugate with all the s1, s2,...,sm directions

Powell’s conjugate directions method

For the generation of two conjugate directions, the parallel
subspace property uses two stating points and two minimizations in
a common direction d. The same result can be obtained with one
single starting point and more minimizations:

x0 x1

x2 x3

As we can see in the Figure, minimizing J(x)
successively over the n directions of the axis of
x, the n+1 minimization is parallel to the first
one, so that vector xn+1 – x1 is C-conjugate to
the first axis. Minimizing in this direction and
repeating the procedure successively, the
minimization over the n C-conjugate directions
can be performed and the optimum reached,
without computing the diagonalization of C

Powell’s conjugate directions method

1. Choose x0 and n linearly independent directions, e.g. si = ei
2. Built the set of n+1 search directions sn, s1, s2, s3, ...,sn
3. Minimize J(x) over the n+1 search directions successively. Be vj

the optimum in the j-iteration
4. Compute a new search direction as sn+1= vn+1 – v1 that will be C

conjugate to sn (and to the previous ones)
5. Use as new set of n+1 search directions sn+1, s2, s3, ...,sn ,sn+1

where s1 has been scratched and sn+1= vn+1 – v1 has been added
6. Check if the optimum has been reached as well as the linear

independence of the n different si
7. Go back to 3

Powell’s conjugate directions method

 If J(x) is quadratic, after n loops, the n+1
searches are made over conjugate directions
and the optimum is reached exactly

• If J(x) is not quadratic, it can be proved that
the algorithm has superlinear convergence to
the optimum

• Is an efficient and reliable method

Fitting a curve to a set of data by least
squares (LS)

y

x

(xi, yi)
y = mx+b

Find the linear relation that better fits
to a set of N couples (xi, yi) of
experimental data. The problem can
be formulated as an optimization one:
Look for the straight line parameters
(m , b) that provide a minimum value
to the sum of the squares of the
deviations between the data and the
formula

0
b

))bmx(y(
0

m

))bmx(y(

))bmx(y(min

N

1i

2
ii

N

1i

2
ii

N

1i

2
iib,m

=
∂

+−∂
=

∂

+−∂

+−

∑∑

∑

==

=
There exist an analytical solution

Data fit

y

x

(xi, yi)

y = f(x,p)

The idea can be extended to any function
y = f(x, p) that should fit a set of N couples
of data (xi , yi). Here p are the unknown
parameters that must be estimated.

∑
=

−
N

1i

2
iip

))p,x(fy(min

The problem can be formulated as the minimization of the sum of
squares of the residuals yi – f(xi,p) with respect to the function
parameters p

Redlich-Kwong’s equation

Empirical relation among:

Pressure P

Temperature T

Molar volume v

of a real gas

T)bv(v
a

bv
RTP

+
−

−
=

a and b are unknown coefficients that must
be estimated using experimental data

Example: CO2 data

volumen molar v Temperatura T Presión P

500 273 33

500 323 43

600 373 45

700 273 26

600 323 37

700 373 39

400 272 38

400 373 63,6

Excel

Solving algebraic equations

In many problems it is necessary to solve equations such as:
 f(x) = 0

Or sets of equations :

There are several methods available:

Newton

Secant

Bisection

But also can be formulated as optimization problems





=
=

0)y,x(g
0)y,x(f

Newton’s method

)x(f
)x(fxx

0...)xx(
x
f)x(f)x(f

0)x(f

i
'

i
i1i

i1i
x

i1i
i

−=

=+−
∂
∂

+=

=

+

++

f(x)

x

xk xk+1

Newton-Raphson

)x(F
x
Fxx

0...)xx(
x
F)x(F)x(F

0)x(F

i

1

x
i1i

i1i
x

i1i

i

i

−

+

++









∂
∂

−=

=+−
∂
∂

+=

=

It is necessary to compute and estimate the
Jacobian every step

Secant method

)()(
)()(

1

1
1

−

−
+ −

−
=

ii

iiii
i xfxf

xfxxfx
x

f(x)

x

xi

xi+1 xi-1

f(xi)

f(xi-1)

f(x)

x

xi

xi+1

xi-1

f(xi)

f(xi-1)

It avoids the
computation of
the derivatives

Initialization problem

F(x)

x

F(x)=0

Oscilations

F(x)

x

F(x)=0

xi xi+1

Formulation as an optimization
problem





=
=

0)y,x(g
0)y,x(fThe problem can be formulated

as:





ε=
ε=

ε+ε
εε

2

1

2
2

2
1,,y,x

)y,x(g
)y,x(f

min
21 If the problem is feasible, the

minimum of ε1
2 + ε2

2 , is (0,0), so
that x and y will verify the set of
equations

22
y,x

)y,x(g)y,x(fmin +

Some important points with regard to
the numerical solution of optimization
problems

Once an optimization problem has been formulated, it is
convenient to reshape it in order to facilitate its numerical
solution and the search of the optimum.

Among possible changes in the formulation we can mention:

Scaling the independent variables

Changes to avoid computations out of the admisible range in
functions such as: log(x), x½, …

Changes to avoid non-differenciable expressions

Changes to improve the convexity of the problem

In addition, it is important an adequate adjustment of the precision,
tolerances, number of steps, etc. of the optimization algorithm

Scaling

Scaling refers to the relative order of magnitude of the problem
variables, which should not be very different in order to avoid
numerical problems created by wide different sensibilities in different
directions.

212121 xxxx,xx −+= 510)(J

Example: x1 takes values around 100 and x2 around 0.1

1.0
u

100
u

uu10u5.0u1000
1.0100

10
1.0

5.0
100

1000)uu(J

21

21211

21

2121
2

xx

xxxx,

==

−+=












−






+






=

It can be reformulated in terms of the new scaled variables u1, u2

Now, u1 and u2 both have values around 1

Convexification

)v,v(Jmin)x,x(Jmin
eeexx

exex

xx)x,x(J

21v,v21x,x

vvvv
21

v
2

v
1

2121

2121

2121

21

=
==

==

=

+

Non convex function in x

Change of variables

Convex function in v

Range problem!

	Unconstraint Optimization
	Outline
	Extremum analytical conditions
	Multivariable Optimization
	Iterative methods
	Criteria for stopping the iterations
	Properties of an iterative algorithm
	Número de diapositiva 8
	Número de diapositiva 9
	Gradient based methods
	Steepest descent method
	Quadratic functions
	Steepest descend algorithm applied to quadratic functions
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Banana Function (Rosenbrock)
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Newton type methods
	Newton’s method
	Número de diapositiva 24
	Convergence
	Advantages / disadvantages of the Newton’s method
	Marquardt-Levenberg’s Algorithm
	Número de diapositiva 28
	Minimization with respect to k
	Quasi-Newton Methods
	Quasi-Newton Methods
	Quasi-Newton Methods
	Quasi-Newton Methods
	DFP Algorithm (Davidon, Fletcher, Powell)
	Número de diapositiva 35
	BFGS Algorithm (Broyden, Fletcher, Goldfarb, Shanno) 1970
	Número de diapositiva 37
	Methods using values of J(x) only (Direct search)
	Simplex search method
	Simplex
	Simplex search method
	Simplex search method,
	Generation of points of the simplex
	Nelder – Mead’s method
	Nelder – Mead’s method
	Powell’s conjugate directions method
	C conjugate directions
	C conjugate directions
	C conjugate directions
	Parallel subspace property
	C conjugate directions
	Powell’s conjugate directions method
	Powell’s conjugate directions method
	Powell’s conjugate directions method
	Fitting a curve to a set of data by least squares (LS)
	Data fit
	Redlich-Kwong’s equation
	Solving algebraic equations
	Newton’s method
	Newton-Raphson
	Secant method
	Initialization problem
	Oscilations
	Formulation as an optimization problem
	Some important points with regard to the numerical solution of optimization problems
	Scaling
	Convexification

